Supporting information

Broadband Spectra with Fluorescence and Phosphorescence Dual Emission from Bichromophoric Platinum Metallomesogens Containing 6,12-Dihydro-indeno[1,2-b]fluorene Linkage

Yafei Wang[†]I^{*}, Jiang Fan^Δ[†], Tianyi Li^Δ[‡], Qiong Wang[†], Junwei Shi[†], Zuoming Qu[†], Hua Tan[†], Yu Liu[†], Weiguo Zhu[▽]*

*To whom correspondence should be addressed

(W. Zhu) zhuwg18@126.com

(Y. Wang) qiji830404@hotmail.com

Contents

Experimental section

Table S1. Phase Transitions of the platinum complexes

Figure S1. TAG traces of FJ-1 and FJ-2

Figure S2. DSC traces obtained for the first and second heating and firsting cooling cycles of FJ-1 and FJ-2 at a rate of 10°C min⁻¹.

Figure S3. POM images of FJ-1 (left, 168°C) and FJ-2 (right, 120°C) upon cooling process

Figure S4. UV-vis absorption spectra of the FJ-1 (black) and FJ-2 (red) measured in CH_2Cl_2 (1×10⁻⁶ M) at room temperature

Figure S5. PL spectra of FJ-2 in solution both in air and N2 at RT upon excitation of 460 nm

Figure S6. PL spectra of FJ-2 in different degassed solution at RT upon excitation of 460 nm

Figure S7 Emission of cyclometallating ligand in CH₂Cl₂ at room temperature (red) and 77K (black)

Figure S8. PL spectra of FJ-1 and FJ-2 in neat film at RT upon excitation of 460 nm

Figure S9. TA decay for FJ-1, following 525 nm pulsed laser excitation in degassed CH₂Cl₂

Figure S10. TA decay for FJ-2, following 525 nm pulsed laser excitation in degassed CH_2Cl_2

Figure S11. The simulated absorption spectra of FJ-1 together with the Osc. Strength

Table S2. Natural Transition orbitals representing the main absorption bands of FJ-1

Figure S12. CV curves of platinum complexes measured in CH₂Cl₂ solution

¹H NMR and TOF-MS spectra

Compound $T(^{\circ}C)$ (H (kJ mol⁻¹))PhaseFJ-1Cr 188 (7.4) Sm 220 (27.9) IsoFJ-2Cr 75 Cr' 82 Sm 193 (3.8) Isoa The data collected from second heating with a rate of 10 °C min⁻¹. ^bThe phase transitionstemperature represent the peak. Phase nomenclature: Cr = crystal, Cr' = glass transition, Sm= smectic mesophase, Iso = isotropic liquid.

Table S1. Phase Transitions of the platinum complexes^{*a*, *b*}

Figure S1. TAG traces of FJ-1 and FJ-2

Figure S2. DSC traces obtained for the first and second heating and firsting cooling cycles of FJ-1 and FJ-2 at a rate of 10°C min⁻¹.

Figure S3. POM images of FJ-1 (left, 168°C) and FJ-2 (right, 120°C) upon cooling process

Figure S4. UV-vis absorption spectra of the FJ-1 (black) and FJ-2 (red) measured in CH_2Cl_2 (1×10⁻⁶ M) at room temperature

Figure S5. PL spectra of FJ-2 in solution both in air and N2 at RT upon excitation of 460 nm

Figure S6. PL spectra of FJ-2 in different degassed solution at RT upon excitation of 460 nm

Figure S7 Emission of cyclometallating ligand in CH_2Cl_2 at room temperature (red) and 77K (black)

Figure S8. PL spectra of FJ-1 and FJ-2 in neat film at RT upon excitation of 460 nm

Figure S9. TA decay for FJ-1, following 525 nm pulsed laser excitation in degassed CH₂Cl₂

Figure S10. TA decay for FJ-2, following 525 nm pulsed laser excitation in degassed CH₂Cl₂

Figure S11. The simulated absorption spectra of FJ-1 together with the Osc. Strength.

Wavelength/nm	Osc. Strength	Major contribution
387.5	1.7859	HOMO->LUMO (45%) HOMO-1->LUMO+1(33%)
332.4	0.9026	HOMO-2->LUMO (30%) HOMO->LUMO (15%)
		HOMO->LUMO+2 (22%)
313.2	0.1843	HOMO-3->LUMO (22%) HOMO-2->LUMO+1
		(16%), HOMO->LUMO+1 (11%)
303.3	0.2086	HOMO-4->LUMO (20%) HOMO-3->LUMO+1
		(23%), HOMO->LUMO+2 (11%)
269.0	0.1186	HOMO->LUMO+7 (13%)
258.5	0.122	HOMO->LUMO+12 (12%)
258.1	0.3522	HOMO-1->LUMO+10 (10%)
257.8	0.5387	HOMO->LUMO+9 (10%)
249.7	0.1073	HOMO-1->LUMO+7 (12%), HOMO-1->LUMO+8
		(22%), HOMO->LUMO+8 (11%)

Table S2. Natural Transition orbitals representing the main absorption bands of FJ-1

Figure S12. CV curves of platinum complexes measured in CH₂Cl₂ solution.

¹H NMR and TOF-MS spectra

9,1842 9,1842 9,1842 9,2900 1,7,9905 1,7,9905 1,7,9905 1,7,5423 1,7,5423 1,7,5423 1,7,5423 1,7,5423 1,7,5423 1,7,5423 1,7,5423 1,7,5423 1,7,5423 1,7,5423 1,7,5423 1,7,5423 1,7,5423 1,2,5338 1,2,5338 1,2,5338 1,2,5338 1,2,5338 1,2,5338 1,2,5423 1,2,

