Electronic Supplementary Material (ESI) for RSC Advances

Tuning the morphology of Co₃O₄ on Ni foam for

supercapacitor application

Zheyin Yu^a, Zhenxiang Cheng^{*}^a, Zhixin Tai^a, Xiaolin Wang^a, Chandrasekar Mayandi Subramaniyam^a, Chunsheng Fang^a, Shaymaa Al-Rubaye^a, Xiaotian Wang^a, Shixue Dou^a

^a Institute for Superconducting and Electronic Materials, University of Wollongong, North Wollongong, NSW 2500, Australia. E-mail: <u>cheng@uow.edu.au</u>; Fax: +61-2-42215731; Tel: +61-2-42981406

Figure S1 XRD pattern of the Co₃O₄-1 precursor

(scratched from Ni foam after 6 h hydrothermal reaction).

Figure S2 XRD patterns of the Co₃O₄-2, Co₃O₄-3, and Co₃O₄-4 precursors (scratched from Ni foam after 6 h hydrothermal reaction)

Figure S3 FTIR spectrum of the Co₃O₄-1 precursor (scratched from Ni foam after 6 h hydrothermal reaction).

Figure S4 Optical images of precursors of Co_3O_4 -1, Co_3O_4 -2, Co_3O_4 -3, and Co_3O_4 -4 (left to right) (a); optical images of Co_3O_4 -1, Co_3O_4 -2, Co_3O_4 -3, and Co_3O_4 -4 (left to right) (b).

Figure S5 CV curves of Co_3O_4 -1 (a), Co_3O_4 -2 (b), Co_3O_4 -3 (c), and Co_3O_4 -4 (d) at various scan rates.

Figure S6 CV curves of bare Ni foam, 6 M hydrochloric acid treated Ni foam and Co_3O_4 -2 at 5 mV s⁻¹ scan rate.

Figure S7 XRD patterns of 6 M hydrochloric acid treated Ni foam

Figure S8 Ni 2p XPS spectra of 6 M hydrochloric acid treated Ni foam (a), O 1s XPS spectra of 6 M hydrochloric acid treated Ni foam (b).

Figure S9 Charge and discharge curves of Co_3O_4 -1 (a), Co_3O_4 -2 (b), Co_3O_4 -3 (c), and Co_3O_4 -4 (d) at various current densities.

Table S1 Comparison of values for the specific area capacitance in previously reported wor	rks on
supercapacitors with values for the four Co ₃ O ₄ materials presented here.	

Material	Specific area capacitance (F cm ⁻²)	Reference
Co ₃ O ₄	$0.68 (4.2 \text{ mA/cm}^2)$	S 1
Co ₃ O ₄ @NiO	1.35 (6 mA/cm ²)	51
Co ₃ O ₄	$0.135 (11.25 \text{ mA/cm}^2)$	S2
Co ₃ O ₄ @MnO ₂	0.56 (11.25 mA/cm ²)	
CoO	$0.285 (5 \text{ mA/cm}^2)$	S 3
CoO@PPy	2.51 (5 mA/cm ²)	
Co ₃ O ₄	0.79 (5 mV/s)	S4
Co ₃ O ₄ @NiCo ₂ O ₄	2.04 (5 mV/s)	
NiCo ₂ O ₄	$0.84 (2 \text{ mA/cm}^2)$	

NiCo ₂ O ₄ @NiCo ₂ O ₄	$1.55 (2 \text{ mA/cm}^2)$	
MnO ₂	$0.101 (8.5 \text{ mA/cm}^2)$	56
MnO ₂ @NiO	$0.35 (8.5 \text{ mA/cm}^2)$	30
NiCo ₂ O ₄	$1.5 (8.5 \text{ mA/cm}^2)$	\$7
NiCo ₂ O ₄ @MnO ₂	$2.54(8.5 \text{ mA/cm}^2)$	57
Co ₃ O ₄ -1	$0.5 (5 \text{ mA/cm}^2)$	This work
Co ₃ O ₄ -2	$1.92 (5 \text{ mA/cm}^2)$	This work
Co ₃ O ₄ -3	$1.53 (5 \text{ mA/cm}^2)$	This work
Co ₃ O ₄ -4	0.87 (5 mA/cm ²)	This work

Figure S10 Electrochemical impedance spectroscopy plots of Co_3O_4 -1, Co_3O_4 -2, Co_3O_4 -3, and Co_3O_4 -4 before cycling (a), after 3000 cycles (b), and equivalent circuit (c).

Figure S11 Bode plots of Co₃O₄-1, Co₃O₄-2, Co₃O₄-3, and Co₃O₄-4.

References:

- S1 X. Xia, J. Tu, Y. Zhang, X. Wang, C. Gu, X. B. Zhao and H. J. Fan, *ACS Nano*, 2012, 6, 5531-5538.
- S2 J. Liu, J. Jiang, C. Cheng, H. Li, J. Zhang, H. Gong and H. J. Fan, Adv Mater, 2011, 23, 2076-2081.
- S3 C. Zhou, Y. Zhang, Y. Li and J. Liu, Nano Lett, 2013, 13, 2078-2085.
- S4 G. Zhang, T. Wang, X. Yu, H. Zhang, H. Duan and B. Lu, Nano Energy, 2013, 2, 586-594.
- S5 X. Liu, S. Shi, Q. Xiong, L. Li, Y. Zhang, H. Tang, C. Gu, X. Wang and J. Tu, ACS Appl Mater Interfaces, 2013, 5, 8790-8795.
- S6 J. Liu, J. Jiang, M. Bosman and H. J. Fan, J Mater Chem, 2012, 22, 2419-2426.
- S7 L. Yu, G. Zhang, C. Yuan and X. W. Lou, Chem Commun, 2013, 49, 137-139.