## **Supplementary Data**

## Tacrine-allyl/propargylcysteine-benzothiazole trihybrids as potential anti-

## Alzheimer's drug candidates

Asha Hiremathad,<sup>a,b</sup> Karam Chand,<sup>a</sup> A. Raquel Esteves,<sup>c</sup> Sandra M. Cardoso,<sup>c,d</sup> Rona R.

Ramsay, e Sílvia Chaves, a Rangappa S. Keri, b M. Amélia Santos, a\*

<sup>a</sup> Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.

<sup>b</sup> Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka, 562112, India.

<sup>c</sup> CNBC – Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal.

<sup>d</sup> Faculdade de Medicina, Universidade de Coimbra, 3030 Coimbra, Portugal.

<sup>e</sup> Biomedical Sciences Research Complex, University of St Andrews, Biomolecular Sciences Building, North Haugh, St Andrews KY16 9ST, UK.

## List of Contents

| 1. | <sup>1</sup> H & <sup>13</sup> C NMR N-(3-(Allylthio)-1-(benzo[d]thiazol-2-ylamino)-1-oxopropan-2-yl)-4-     |         |  |  |  |  |  |  |
|----|--------------------------------------------------------------------------------------------------------------|---------|--|--|--|--|--|--|
|    | (1,2,3,4-tetrahydroacridin-9-ylamino)butanamide (10a)                                                        |         |  |  |  |  |  |  |
| 2. | <sup>1</sup> H & <sup>13</sup> C NMR of <i>N-(3-(Allylthio)-1-(benzo[d]thiazol-2-ylamino)-1-oxopropan-2-</i> | Eia 92  |  |  |  |  |  |  |
|    | yl)-6-(1,2,3,4-tetrahydroacridin-9-ylamino)hexanamide (10b)                                                  |         |  |  |  |  |  |  |
| 3. | <sup>1</sup> H & <sup>13</sup> C NMR of <i>N-(3-(Allylthio)-1-(benzo[d]thiazol-2-ylamino)-1-oxopropan-2-</i> | E:- 02  |  |  |  |  |  |  |
|    | yl)-4-(6-chloro-1,2,3,4-tetrahydroacridin-9-ylamino)butanamide (10c)                                         |         |  |  |  |  |  |  |
| 4. | <sup>1</sup> H & <sup>13</sup> C NMR of N-(3-(Allylthio)-1-(benzo[d]thiazol-2-ylamino)-1-oxopropan-2-        |         |  |  |  |  |  |  |
|    | yl)-6-(6-chloro-1,2,3,4-tetrahydroacridin-9-ylamino)hexanamide (10d)                                         |         |  |  |  |  |  |  |
| 5. | <sup>1</sup> H & <sup>13</sup> C NMR of N-(1-(Benzo[d]thiazol-2-ylamino)-1-oxo-3-(prop-2-                    | Fig S5  |  |  |  |  |  |  |
|    | ynylthio)propan-2-yl)-4-(1,2,3,4-tetrahydroacridin-9-ylamino)butanamide (10e)                                |         |  |  |  |  |  |  |
| 6. | <sup>1</sup> H & <sup>13</sup> C NMR of <i>N</i> -(1-(Benzo[d]thiazol-2-ylamino)-1-oxo-3-(prop-2-            |         |  |  |  |  |  |  |
|    | ynylthio)propan-2-yl)-6-(1,2,3,4-tetrahydroacridin-9-ylamino)hexanamide (10f)                                |         |  |  |  |  |  |  |
| 7. | <sup>1</sup> H & <sup>13</sup> C NMR of N-(1-(Benzo[d]thiazol-2-ylamino)-1-oxo-3-(prop-2-                    |         |  |  |  |  |  |  |
|    | ynylthio)propan-2-yl)-4-(6-chloro-1,2,3,4-tetrahydroacridin-9-ylamino)butanamide                             |         |  |  |  |  |  |  |
|    | (10g)                                                                                                        |         |  |  |  |  |  |  |
| 8. | <sup>1</sup> H & <sup>13</sup> C NMR of N-(1-(Benzo[d]thiazol-2-ylamino)-1-oxo-3-(prop-2-                    |         |  |  |  |  |  |  |
|    | ynylthio)propan-2-yl)-6-(6-chloro-1,2,3,4-tetrahydroacridin-9-ylamino)hexanamide                             | r1g. 58 |  |  |  |  |  |  |
|    | (10h)                                                                                                        |         |  |  |  |  |  |  |

- 9. Representative examples of IC<sub>50</sub> plots for AChE inhibition assays of compounds 10c and 10g: insets contain representative plots of absorbance versus time for the same compounds at different concentrations of inhibitor
- 10. Antioxidant activity (AA) plots for compounds 10b and 10f

Fig. S10

In vitro activities of TAC-SAC, 9(a-f), and TAC-SPRC, 9(g-l), hybrids, towards AChE inhibition, antioxidant activity (DPPH) and anti-Aβ aggregation (from ref. 19 and 20)



Fig. S1 - <sup>1</sup>H & <sup>13</sup>C NMR N-(3-(Allylthio)-1-(benzo[d]thiazol-2-ylamino)-1-oxopropan-2-yl)-4-(1,2,3,4-tetrahydroacridin-9-ylamino)butanamide (**10a**)



Fig. S2 - <sup>1</sup>H & <sup>13</sup>C NMR of *N-(3-(Allylthio)-1-(benzo[d]thiazol-2-ylamino)-1-oxopropan-2-yl)-6-(1,2,3,4-tetrahydroacridin-9-ylamino)hexanamide* (**10b**)



Fig. S3 - <sup>1</sup>H & <sup>13</sup>C NMR of *N*-(3-(Allylthio)-1-(benzo[d]thiazol-2-ylamino)-1-oxopropan-2-yl)-4-(6-chloro-1,2,3,4-tetrahydroacridin-9-ylamino)butanamide (**10c**)



Fig. S4 -  ${}^{1}H \& {}^{1}C$  NMR of <u>N</u>-(3-(Allylthio)-1-(benzo[d]thiazol-2-ylamino)-1-oxopropan-2-yl)-6-(6-chloro-1,2,3,4-tetrahydroacridin-9-ylamino)hexanamide (10d)



Fig. S5 - <sup>1</sup>H & <sup>13</sup>C NMR of *N*-(1-(Benzo[d]thiazol-2-ylamino)-1-oxo-3-(prop-2-ynylthio)propan-2-yl)-4-(1,2,3,4-tetrahydroacridin-9-ylamino)butanamide (**10e**)



Fig. S6 - <sup>1</sup>H & <sup>13</sup>C NMR of *N*-(1-(Benzo[d]thiazol-2-ylamino)-1-oxo-3-(prop-2-ynylthio)propan-2-yl)-6-(1,2,3,4-tetrahydroacridin-9-ylamino)hexanamide (**10f**)



Fig. S7 - <sup>1</sup>H & <sup>13</sup>C NMR of *N*-(1-(Benzo[d]thiazol-2-ylamino)-1-oxo-3-(prop-2-ynylthio)propan-2-yl)-4-(6-chloro-1,2,3,4-tetrahydroacridin-9-ylamino)butanamide (**10**g)



Fig. S8 - <sup>1</sup>H & <sup>13</sup>C NMR of *N*-(1-(Benzo[d]thiazol-2-ylamino)-1-oxo-3-(prop-2-ynylthio)propan-2-yl)-6-(6-chloro-1,2,3,4-tetrahydroacridin-9-ylamino)hexanamide (**10h**).



Fig. S9 - Representative examples of  $IC_{50}$  plots for AChE inhibition assays of compounds **10c** and **10g**: insets contain representative plots of absorbance versus time for the same compounds at different concentrations of inhibitor.



Fig. S10 - Antioxidant activity (AA) plots for compounds 10b and 10f

Table S1 – In vitro activities of TAC-SAC, **9(a-f)**, and TAC-SPRC, **9(g-l)**, hybrids, towards AChE inhibition, antioxidant activity (DPPH) and anti-A $\beta$  aggregation (from ref. 19 and 20)



| 9/ | (a_l | ) |
|----|------|---|
| 21 | a-1  |   |

| Comp.<br>code | R <sub>1</sub> | $\mathbf{R}_2$                     | n | AChE<br>inhibit.<br>IC <sub>50</sub><br>(µM) <sup>a</sup> | Antioxid.<br>EC <sub>50</sub><br>(10×μM) <sup>b</sup> | Aβ aggreg.<br>Inhib.°<br>(%) | Cu-induc<br>Aβ aggreg.<br>Inhib.°<br>(%) |
|---------------|----------------|------------------------------------|---|-----------------------------------------------------------|-------------------------------------------------------|------------------------------|------------------------------------------|
| 9a            | Н              | CH <sub>2</sub> CH=CH <sub>2</sub> | 2 | 1.59                                                      | 65.7                                                  | 8.5                          | 30.9                                     |
| 9b            | Н              | »                                  | 3 | 0.88                                                      | 86.5                                                  | -                            | -                                        |
| 9c            | Н              | »                                  | 4 | 1.20                                                      | 73.5                                                  | -                            | -                                        |
| 9d            | Cl             | »                                  | 2 | 0.30                                                      | 55.8                                                  | 10.9                         | 50.3                                     |
| 9e            | Cl             | »                                  | 3 | 0.68                                                      | 50.5                                                  | 14.7                         | 35.1                                     |
| 9f            | Cl             | »                                  | 4 | 0.51                                                      | 99.2                                                  | 10.3                         | 32.1                                     |
| 9g            | Н              | -CH <sub>2</sub> C≡CH              | 2 | 1.21                                                      | 2.0                                                   | 13.0                         | 44.4                                     |
| 9h            | Н              | »                                  | 3 | 1.72                                                      | 41.7                                                  | -                            | -                                        |
| 9i            | Н              | »                                  | 4 | 1.21                                                      | 52.5                                                  | -                            | -                                        |
| 9j            | Cl             | »                                  | 2 | 0.56                                                      | 56.3                                                  | 11.4                         | 49.3                                     |
| 9k            | Cl             | »                                  | 3 | 0.59                                                      | 55.1                                                  | 12.1                         | 34.3                                     |
| 91            | Cl             | »                                  | 4 | 0.97                                                      | 75.6                                                  | -                            | -                                        |
| Тас           | -              | -                                  | - | 0.19                                                      | >100                                                  | -                            | -                                        |

<sup>a</sup> Standard deviation within 10 %; <sup>b</sup> EC<sub>50</sub> values for DPPH assay; <sup>c</sup> Inhibition of A $\beta$  (1-42) aggregation (40  $\mu$ M) with or without copper (40  $\mu$ M); thioflavin-T fluorescence method with 80  $\mu$ M of inhibitor.

 Table 1S (supplementary): Summary of some calculated pharmacokinetic descriptors<sup>a</sup>

| S.No. | Comp. | R <sub>1</sub> | R <sub>2</sub> | MW     | clog P <sup>b</sup> | log BB <sup>c</sup> | Caco-2       | Violations of | CNS      |
|-------|-------|----------------|----------------|--------|---------------------|---------------------|--------------|---------------|----------|
|       | Code  |                |                |        |                     |                     | permeability | Lipinski's    | activity |
|       |       |                |                |        |                     |                     | (nm/sec)     | rule of 5     |          |
| 1     | 10b   | Н              |                | 559.75 | 5.859               | -1.355              | 590          | 2             |          |
| 2     | 10c   | Н              |                | 587.80 | 6.684               | -1.550              | 613          | 2             |          |
| 3     | 10e   | Cl             |                | 594.19 | 6.187               | -0.740              | 1263         | 2             | -        |
| 4     | 10f   | Cl             |                | 622.24 | 7.366               | -1.281              | 890          | 2             |          |
| 5     | 10h   | Н              |                | 557.73 | 5.786               | -1.508              | 445          | 2             |          |
| 6     | 10i   | Н              |                | 585.78 | 6.671               | -1.308              | 999          | 2             |          |
| 7     | 10k   | Cl             |                | 592.17 | 6.231               | -1.280              | 477          | 2             |          |
| 8     | 101   | Cl             |                | 620.23 | 6.918               | -1.020              | 1350         | 2             |          |

a Predicted values using program QikProp v. 2.5<sup>34</sup>. <sup>b</sup> Calculated octanol/water partition coefficient. <sup>c</sup> Brain/blood partition coefficient.