Supporting Information

Bifunctional Brønsted-Lewis solid acid as recyclable catalyst for conversion of glucose to 5-hydroxymethylfurfural and its hydrophobicity effect

1. Cr(III) XRF analysis

 $CrCl_{3}$ · $6H_{2}O$ and KBr were mixed at constant total mass of 0.8 g, but various ratio. After grinding, pellet technique was performed for test. The ratios and experimental results are listed in Table. S1, and the calibration curve is in Fig. S1.

Table, S1.	Components	ratios of r	pellet and 2	XRF peak	areas	of Cr	(111)
	00111001101100					0.0.	····/

No.	1	2	3	4	5
Mass of $CrCl_3$ (g)	0.0103	0.0503	0.0998	0.2005	0.2999
Mass of KBr (g)	0.7898	0.7500	0.7003	0.6000	0.4996
Cr(III) content (mg/g)	2.512	12.27	24.34	48.88	73.21
Cr(III) peak area	387.5	1256	2010	3623	5475

Fig. S1 XRF Calibration curve of Cr(III)

2. EDX analysis of Cr(III)-PDVB-0.3-SSFBI

Fig. S 2 Elemental maps of fresh(a-e) and spent (f-j) Cr(III)-PDVB-0.3-SSFBI.

Fig. S3 N₂ adsorptione-desorption isotherms and BJH mesopore size distribution from desorption branch (inset). (c) fresh Cr(III)-PSFSI-MSMA₁₅/SiO₂; (d) spent Cr(III)-PSFSI-MSMA₁₅/SiO₂; (e) Cr(III)-NKC-9.

Table. S2 Textural parameters of various solid acid samples							
No.	samples	S _{BET} (m²/g)	V _{total} (cm ³ /g)	Pore size (nm)			
1	fresh (III)-PSFSI-MSMA ₁₅ /SiO ₂	239.0	0.248	1.97			
2	spent (III)-PSFSI-MSMA ₁₅ /SiO ₂	234.3	0.266	1.94			
3	fresh (III)-PDVB-0.3-SSFBI	302.1	0.265	1.81			
4	spent (III)-PDVB-0.3-SSFBI	236.0	0.242	1.85			
5	fresh NKC-9	25.0	0.032	-			
	100 - 90 - 80 - (70 - (%) 60 - 50 - ss 50 - ss 40 -	250.3	NKC-9 H-PDVB-0.3-5 H-PSFSI-MSN	SSFBI MA ₁₅ /SiO ₂			

Fig. S4 TG analysis of various solid Brønsted acids

Temperature (°C)

2. Experimental results of glucose conversion catalysed by bifunctional solid acids Table. S3 HMF yield catalyzed by Cr(III)-NKC-9

	,	- / - (/			
Reaction time (h)	Run1	Run2	Run3	average	Standard deviation
1	49.3	47.2	48.1	48.2	1.05
1.5	55.5	56.8	53.1	55.1	1.88
2	59.8	58.7	58.6	59.0	0.67
2.5	63.8	61.2	62.9	62.6	1.32
3	62.3	63.9	67.2	64.5	2.50
3.5	67.9	68.2	65.8	67.3	1.31
4	67.5	68.3	65.5	67.1	1.44

Table. S4 Glucose conversion catalyzed by Cr(III)-NKC-9

Reaction time (h)	Run1	Run2	Run3	average	Standard deviation
1	66.9	67.1	71.5	68.5	2.60

4	100	98.2	95.8	98.0	2.11	
3.5	92.9	94.2	97.3	94.8	2.26	
3	93.4	93.1	95.7	94.1	1.42	
2.5	95.8	95.2	93.4	94.8	1.25	
2	84.9	86.2	89.6	86.9	2.43	
1.5	81.3	78.8	77.3	79.1	2.02	

Table. S5 HMF yield catalyzed by Cr(III)-PSFSI-MSMA_{15}/SiO_2

Reaction time (h)	Run1	Run2	Run3	average	Standard deviation
1	45.3	47.2	45.8	46.1	0.98
2	57.3	59.5	59.6	58.8	1.30
3	60.8	61.5	63.7	62.0	1.51
4	63.4	60.1	64.0	62.5	2.10
5	60.5	62.5	60.3	61.1	1.22
6	63.8	63.1	60.1	62.3	1.97

Table. S6 Glucose conversion catalyzed by Cr(III)-PSFSI-MSMA₁₅/SiO₂

	Inversion	cutury2cu b	y ci (iii) i 3i	51 1015101/ (15/ 5102	
Reaction time (h)	Run1	Run2	Run3	average	Standard deviation
1	65.4	66.8	70.9	67.7	2.86
2	88.5	86.7	83.1	86.1	2.75
3	91.2	93.5	85.3	90.0	4.23
4	100	100	100	100.0	0.00
5	100	100	100	100.0	0.00
6	100	100	100	100.0	0.00

Table. S 7 HMF yield catalyzed by Cr(III)-PDVB-0.3-SSFBI

Table. 57 Thirr yield catalyzed by CI (III)-FDVB-0.5-55FBI								
Reaction time (h)	Run1	Run2	Run3	average	Standard deviation			
3	45.2	49.5	49.6	48.1	2.51			
4	49.7	48.3	51.5	49.8	1.60			
5	53.6	53.1	52.1	52.9	0.76			
6	57.6	58.2	54.8	56.9	1.81			
7	59.5	60.8	57.3	59.2	1.77			
8	55.3	57.2	57.9	56.8	1.35			
9	54.5	56.3	51.8	54.2	2.26			

Table. S 8 Glucose	conversion	catalyzed by	[,] Cr(III)-P	DVB-0.3-SSFBI
--------------------	------------	--------------	------------------------	---------------

Table. 5 6 Glacose conversion catalyzed by claim 1 DVB 6.5 551 bi						
	Reaction time (h)	Run1	Run2	Run3	average	Standard deviation
	3	78.9	77.3	73.5	76.6	2.77
	4	79.2	79.9	81.2	80.1	1.01
	5	86.1	85.3	81	84.1	2.74
	6	89.8	91.3	95.3	92.1	2.84
	7	94.7	91.2	93.9	93.3	1.83
	8	95.3	92.4	96.2	94.6	1.99

Cycle	1	2	average
1	60.5	57.8	59.2
2	56.6	57.9	57.3
3	55.9	59.8	57.9
4	57.3	55.8	56.6
5	55.2	59.9	57.6
6	59.3	57.1	58.2
7	59.5	58.1	58.8
8	57.3	59.9	58.6
9	58.5	59.8	59.2
10	56.9	56.3	56.6
11	58.7	56.5	57.6
12	58.3	59.8	59.1
13	56.5	53.7	55.1

3. Experimental results of cycle experiments of Cr(III)-PDVB-0.3-SSFBI

Table. S 9 HMF yields of cycle experiments catalyzed by Cr(III)-PDVB-0.3-SSFBI

Table.	S 10	Glucose	conversions	of cv	cle exi	periments	catal	zed by	v Cr(111)-	-PDVB-0.3	3-SSFBI
		0.00000		,	0.0 0.0		00.00.		,	,		

Cycle	1	2	average
1	93.7	95.3	94.5
2	91.8	89.1	90.5
3	89.1	87.3	88.2
4	88.6	90.6	89.6
5	86.1	84.7	85.4
6	84.7	81.9	83.3
7	85.9	89.1	87.5
8	83.6	82.2	82.9
9	84.1	88.9	86.5
10	86.7	83.1	84.9
11	81.9	85.1	83.5
12	85.2	83.9	84.6
13	84.7	81.9	83.3

Table. S 11 Cr(III)-PDVB-0.3-SSFBI recovery of cycle experiments

Cycle	1	2	average
1	/	/	/
2	94.5	92.1	93.3
3	93.1	96.9	95.0
4	93.6	91.8	92.7

5	90.8	93.6	92.2	
6	96.3	93.5	94.9	
7	96.1	93.7	94.9	
8	95.8	93.8	94.8	
9	91.9	95.3	93.6	
10	94.3	91.2	92.8	
11	90.3	92.5	91.4	
12	94.3	89.9	92.1	
13	86.3	90.5	88.4	