Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

A multi-purpose electrochemical biosensor based on a "green" homobifunctional cross linker coupled with PAMAM dendrimer grafted p-MWCNTs as platform: Application to detect α2,3sialylated glycans and α2,6-sialylated glycans in human serum

Yazhen Niu¹, Junlin He¹, Yuliang Li¹, Yilin Zhao, Chunyong Xia, Guolin Yuan, Lei

Zhang, Yuchan Zhang, Chao Yu*

Institute of Life Science and School of Public Health, Chongqing Medical University,

Chongqing 400016, P. R. China

¹Junlin He, Yuliang Li and Yazhen Niu contributed equally to this work.

*Corresponding author: Prof. Chao Yu,

Email: yuchaom@163.com

Tel: (86) 23-68485589

Fax: (86) 23-68486294

Full address: Box 174#, Institute of Life Sciences, Chongqing Medical University,

No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, P. R. China.

Fig S1. DSC of The p-MWCNTs (A), PAMAM (B) and p-MWCNTs-PAMAM (C).

Fig S2.Calibration curve of the biosensor toward different concentration of Neu5Aca(2-3)Gal β MP Glycoside (n=5).

Fig S3. incubation time of SNA (A), concentration of SNA (B), recognition time of

α 2,6-sialylated glycans (C).

Fig S4. α2,6-sialylated glycans (50 ng mL⁻¹), α2,3-sialylated glycans (500 ng mL⁻¹), glucose (500 ng mL⁻¹), ascorbic acid (500 ng mL⁻¹), uric acid (500 ng mL⁻¹), Lcysteine (500 ng mL⁻¹) and dopamine (500 ng mL⁻¹);

Tab S1. Recovery of serum samples for the electrochemical biosensor using Amperometric i-t curve analysis (n = 3).

Samples	Canalyte	Added	Found	Recovery	RSD (%)
Sample-1	NT	0.5 pg mL ⁻¹	0.52 pg mL ⁻¹	103.87	2.19
Sample-2	NT	5 ng mL ⁻¹	5.14 ng mL ⁻¹	102.17	4.76
Sample-3	NT	40 ng mL ⁻¹	42.93ng mL ⁻¹	107.32	2.46