Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Ruthenium-catalysed *C*-alkylation of 1,3-dicarbonyl compounds with primary alcohols and synthesis of 3-keto-quinolines

Elena Cini, Elena Petricci, Giuseppina I. Truglio, Marialaura Vecchio and Maurizio Taddei Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy.

Supporting Information

General experimental details	2
Characterisation of compounds 2, 12-23	2-6
Compound 28	6
Characterisation of quinolines 37-44	7-9
¹ H and ¹³ C spectra	10-33

GENERAL EXPERIMENTAL DETAILS

All reagents were used as purchased from commercial suppliers without further purification. The reactions were carried out in oven dried or flamed vessels. Solvents were dried and purified by conventional methods prior use. Toluene was distilled from sodium. Flash column chromatography was performed with Merck silica gel 60, 0.040-0.063 mm (230-400 mesh). Merck aluminium backed plates pre-coated with silica gel 60 (UV254) were used for analytical and preparative thin layer chromatography and were visualized by staining with a KMnO₄ solution. NMR spectra were recorded at 25 °C and 400 MHz for ¹H and 100 MHz for ¹³C. The solvent is specified for each spectrum. Splitting patterns are designated as s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad. Chemical shifts (δ) are given in ppm relative to the resonance of their respective residual solvent peak. GC/MS analyses were performing using a ion-trap detector equipped with a 30 m OV-101 capillary column, splitting injector at 280 °C, method: 80 °C - 200 °C 30 min. High and low resolution mass spectroscopy analyses were recorded by electronspray ionization. Melting points were determined in open capillary tubes and are uncorrected. MW heated reaction were carried out with a CEM Discover oven, the temperature recorder through the IR sensor. The internal pressure was monitored during the reaction and the max value is reported.

Yield: 64% Solid that decomposes on heating. ¹H-NMR (400 MHz, CDCl₃): δ 7.87 – 7.82 (m, 2H), 7.71 (d, *J* = 5.7 Hz, 2H), 7.15 – 7.03 (m, 5H), 3.30 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ 199.6, 142.1, 136.7, 135.1, 129.1, 127.8, 126.2, 122.6, 54.6, 31.8. GC/MS: R_t 20.23 min; m/z 236 (C₁₆H₁₂O₂). HRMS (EI): Calcd for C₁₆H₁₂O₂Na [M+Na]⁺ 259.0735, found 259.0738.

2-Ethyl-1,3-indandione

Yield: 61% Mp 53-54 °C (Lit mp: 55 °C).² ¹H-NMR (400 MHz, CDCl₃): δ 8.16 – 7.49 (m, 4H), 2.98 – 2.90 (m, 1H), 2.07 – 1.94 (m, 2H), 0.95 (t, *J* = 7.6 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ 200.8, 142.3, 133.9, 127.6, 51.1, 17.0, 11.5. GC/MS: R_t 14.01 min; m/z 174 (C₁₁H₁₀O₂). HRMS (EI): Calcd for C₁₁H₁₀O₂Na [M+Na]⁺ 197.0579, found 197.0576.

Yield: 57% Dense waxy material. ¹H-NMR (400 MHz, CDCl₃): δ 8.23 – 7.51 (m, 4H), 2.97 (t, *J* = 6.0 Hz, 1H), 1.95 – 1.75 (m, 2H), 1.36 – 1.10 (m, 8H), 0.79 (d, *J* = 16.9 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ 201.0, 140.9, 132.6, 127.2, 53.0, 31.9, 29.5, 29.0, 22.3, 15.1. GC/MS: R_t 18.81 min; m/z 230 (C₁₅H₁₈O₂). HRMS (EI): Calcd for C₁₅H₁₈O₂Na [M+Na]⁺ 253.1204, found 253.1206.

15

Yield: 66% Mp 96-98 °C (Lit. mp 97.5-98.0 °C)^{3 1}H-NMR (400 MHz, CDCl₃) δ 7.91 (dt, J = 6.8, 3.4 Hz, 2H), 7.81 – 7.73 (m, 2H), 7.05 (d, J = 1.9 Hz, 1H), 6.10 (d, J = 2.7 Hz, 1H), 5.96 (d, J = 3.2 Hz, 1H), 3.34 (d, J = 5.4 Hz, 2H), 3.31 – 3.26 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 199.6, 151.9, 142.4, 141.3, 134.6, 123.7, 110.3, 107.5, 53.0, 24.5. HRMS (EI): Calcd for C₁₄H₁₀O₃Na [M+Na]⁺ 249.0528, found 249.0527.

Yield: 76% Dense material that tends to solidify. ¹H NMR (400 MHz, CDCl₃): δ 8.09 – 7.69 (m, 4H), 7.42 – 6.98 (m, 5H), 4.98 (m, 3H), 3.18 (q, *J* = 6.3 Hz, 2H), 2.98 (t, *J* = 6.1 Hz, 1H), 1.98 – 1.82 (m, 2H), 1.64 (dq, *J* = 14.3, 6.9 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 204.1, 145.8, 139.3, 132.0, 131.6, 126.8, 70.2, 56.4, 44.2, 30.5, 27.6. HRMS (EI): Calcd for C₂₀H₁₉NO₄Na [M+Na]⁺ 360.1212, found 360.1210.

2-(3-Benzyloxycarbonylaminoethyl)-1,3-indandione

Yield: 64% M.p. 67-68 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.09 – 7.62 (m, 4H), 7.44 – 7.09 (m, 5H), 5.24(bs, 1H) 4.99 (m, 2H), 3.44 (m, 2H), 3.04 (t, *J* = 6.4 Hz, 1H), 2.18 – 1.94 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 199.8, 155.8, 141.6, 136.2, 135.3, 128.0, 127.6, 123.7, 122.9, 66.2, 51.3, 38.6, 29.2, 26.4. HRMS (EI): Calcd for C₁₉H₁₇NO₄Na [M+Na]⁺ 346.1055, found 346.1053.

2-Benzyl-1,3-cyclohexanedione

18

Yield: 62% M.p. 179-181 °C (Lit m.p. 180 °C)⁴. ¹H NMR (400 MHz, CD₃OD) δ 7.37 – 6.86 (m, 5H), 4.83 (s, 2H), 3.30 (s, 1H), 2.43 (t, *J* = 6.2 Hz, 4H), 1.94 (p, *J* = 5.4, 4.6 Hz, 2H). ¹³C NMR (100 MHz, CD₃OD) δ 199.2, 139.7, 126.1, 125.5, 122.9, 113.3, 30.4, 27.4, 25.0, 20.9, 18.6. GC/MS: R_t 18.34 min; m/z 202 (C₁₃H₁₄O₂). HRMS (EI): Calcd for C₁₃H₁₄O₂Na [M+Na]⁺ 225.0892, found 225.0895.

2-(3-Benzyloxycarbonylaminopropyl)-1,3-cyclohexanedione

19

Yield: 52% M.p. 94-96 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.20 (m, 5H), 5.06 (d, J = 9.2 Hz, 3H), 3.15 (t, J = 10.6 Hz, 1H), 3.06 (q, J = 6.2 Hz, 2H), 2.58 (m, 1H), 2.45 (m, 2H), 2.32 (m, 2H), 2.14 (m, 1H) 1.90 (m, 2H), 1.55 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 209.4, 161.4, 132.1, 131.6, 131.5, 70.6, 43.7, 40.7, 39.7, 33.3, 27.3, 24.4, 22.0. HRMS (EI): Calcd for C₁₇H₂₁NO₄Na [M+Na]⁺ 326.1369, found 326.1365.

2-Hexyl-1,3-cyclopentanedione

Yield: 51% Solid that decomposes on heating (Lit m.p. 240 °C)⁵ ¹H NMR (400 MHz, CD₃OD) δ 2.47 (s, 4H), 2.09 (t, *J* = 7.4 Hz, 2H), 1.42 – 1.23 (m, 9H), 0.89 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 203.5, 49.6, 31.2, 30.2, 29.8, 26.9, 22.3, 20.3, 13.2. HRMS (EI): Calcd for C₁₁H₁₈O₂Na [M+Na]⁺ 205.1205, found 205.1203.

2-(3-Phenylpropyl)-1,3-cyclopentanedione

21

Yield: 47% Gum that tends to solidify on standing. ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 6.99 (m, 5H), 2.54 (d, *J* = 33.1 Hz, 7H), 2.22 (t, *J* = 7.6 Hz, 2H), 1.75 (p, *J* = 7.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl3) δ 197.8, 142.4, 127.5, 125.2, 43.5, 38.8, 35.6, 28.8, 20.3. HRMS (EI): Calcd for C₁₄H₁₆O₂Na [M+Na]⁺ 239.1048, found 239.1050.

2-Benzyl-1,3-cyclopentanedione

Yield: 49% Solid that decomposes on heating . ¹H NMR (400 MHz, CD₃OD) δ 7.25 – 6.98 (m, 5H), 3.49 – 3.15 (m, 3H), 2.48 (s, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 198.2, 140.3, 128.2, 127.7, 125.5, 116.6, 36.9, 32.9, 26.1. HRMS (EI): Calcd for C₁₂H₁₂O₂Na [M+Na]⁺ 211.0735, found 211.0733.

3-(3-Benzyloxycarbonylaminopropyl)-6-undecyl-5,6-dihydro-3*H*-pyran-2,4-dione

Yield: 44% Dense waxy material ¹H NMR (400 MHz, CDCl₃); the spectrum is referred to the prevalent enolic form: δ 7.33 (s,5H), 5.09 (d, *J* = 19.3 Hz, 3H), 4.29 (m, 1H), 3.10 (m, 2H), 2.58 – 2.26 (m, 2H), 1.83 – 1.48 (m, 4H), 1.24 (s, 20H), 0.86 (t, *J* = 6.6 Hz, 3H). ¹³C NMR (101 MHz,) δ 174.9, 169.6, 154.9, 132.1, 131.7, 99.8, 81.0, 80.7, 80.3, 79.2, 71.9, 70.6, 70.4, 41.1, 41.1, 40.8, 40.6, 39.8, 38.1, 37.0, 36.1, 33.7, 33.7, 33.3, 33.3, 27.4, 26.7, 26.5, 25.9, 24.4, 24.0, 23.5, 22.5, 22.3, 22.1. A preparative TLC gave the analytical sample. HRMS (EI): Calcd for C₂₇H₄₁NO₅Na [M+Na]⁺ 482.2883, found 482.2880.

Yield: 50% M.p 110-112 °C (Lit. m.p. 112 °C)^{6 1}H NMR (400 MHz, CDCl₃) enol form: δ 4.64 (m, 1H), 2.74 – 2.59 (m, 1H), 2.38 (dd, J = 18.8, 11.8 Hz, 1H), 1.98 – 1.69 (m, 3H), 1.41 – 1.22 (m, 28H), 0.85 (t, J = 5.8 Hz, 6H). A preparative TLC gave the analytical sample. HRMS (EI): Calcd for C₂₂H₄₀O₃Na [M+Na]⁺ 375.2876 100, found 375.2873

2,3,4,4a-Tetrahydro-1H-indeno[1,2-b]pyridin-5(9bH)-one acetate

28

In a round bottom flask containing a magnetic stirrer bar, 2-(3-benzyloxycarbonylaminopropyl)-1,3indandione **16** (67 mg, 0.2 mmol) was solubilized in 20 mL of MeOH under nitrogen. Acetic acid (25 mg, 24 μ L, 0.42 mmol) and 20% Pd(OH)₂ on charcoal (3 mg, 0.021 mmol) were added and reaction mixture was stirred under H₂ for 72 h. The reaction mixture was then filtered on celite and the catalyst washed with MeOH. The solvent was evaporated and the crude purified by flash chromatography (CH₂Cl₂ to CH₂Cl₂/MeOH, 80:20). Obtained 22 mg, (47 % yield) of a solid that decomposes on heating. *Major diasteroisomer* (**trans**) ¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.71 (m, 1H), 7.23 (d, *J* = 3.8 Hz, 4H), 4.19 (d, *J* = 11.4 Hz, 1H), 3.37 – 3.29 (m, 2H), 2.97 (dd, *J* = 14.7, 6.8 Hz, 1H), 2.78 (s, 3H), 2.52 (dd, *J* = 14.7, 11.3 Hz, 1H), 2.33 (m, 1H), 2.13 (m 1H), 1.94 (m, 2H), 1.67 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 200.5, 134.3, 128.8, 128.5, 127.4, 127.1, 124.8, 61.6, 55.1, 46.0, 34.2, 27.5. GC/MS: R_t 15.36 min m/z 187 (C₁₂H₁₃ON). HRMS (EI) Calcd. for C₁₂H₁₄NO [M+H]⁺ 188.1076, found 188.1074.

6-Chloro-3,4-dihydro-2H-acridin-1-one

Yield: 70 % Waxy material ¹H NMR (400 MHz, CDCl₃) δ 8.49 (s, 1H), 7.75 (d, J = 9.4 Hz, 1H), 7.58 (d, J = 8.7 Hz, 1H), 7.25 (d, J = 8.6 Hz, 1H), 3.33 – 2.97 (m, 2H), 2.86 – 2.50 (m, 2H), 2.08 (dt, J = 12.5, 6.1 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 197.2, 163.0, 149.6, 138.1, 136.5, 136.3, 130.6, 128.1, 127.5, 127.1, 126.2, 124.9, 38.8, 33.2, 21.5. HRMS (EI): Calcd for C₁₃H₁₁CINO [M+H]⁺ 232.0529, found 232.0526.

5-Methyl-3,4-dihydro-2H-acridin-1-one

38

Yield 62%. M.p. 76-78 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.69 (s, 1H), 7.66 (d, *J* = 8.1 Hz, 1H), 7.55 (d, *J* = 6.9 Hz, 1H), 7.34 (t, *J* = 7.6 Hz, 1H), 3.35 – 3.20 (m, 2H), 2.72 (d, *J* = 9.9 Hz, 5H), 2.19 (p, *J* = 6.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 197.7, 160.3, 148.3, 136.5, 136.2, 131.7, 127.2, 126.2, 125.8, 125.4, 38.7, 33.2, 21.5, 17.5. HRMS (EI): Calcd for C₁₄H₁₄NO [M+H]⁺ 212.1075, found 212.1077.

2-Azatricyclo[7.4.0.0^{3,7}]trideca-1(9),2,7,10,12-pentaen-6-one

Yileld 49%. Gum ¹H NMR (400 MHz, CDCl₃) δ 8.53 (s, 1H), 8.09 (d, *J* = 8.6 Hz, 1H), 7.94 (d, *J* = 8.1 Hz, 1H), 7.81 (t, *J* = 7.4 Hz, 1H), 7.55 (t, *J* = 7.5 Hz, 1H), 3.45 – 3.39 (m, 2H), 2.90 – 2.82 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 204.8, 151.7, 133.5, 133.2, 132.6, 130.4, 129.4, 129.0, 127.8, 126.8, 36.3, 28.9. HRMS (EI): Calcd for C₁₂H₁₀NO [M+H]⁺ 184.0762, found 184.0765.

Yield: 61% M.p. 172-174°C. Lit m.p. $(175-176 °C)^{8}$ ¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 8.05 (t, J = 8.7 Hz, 2H), 7.79 (dd, J = 14.2, 7.7 Hz, 2H), 7.71 (t, J = 7.7 Hz, 1H), 7.64 (t, J = 7.4 Hz, 1H), 7.47 (td, J = 7.5, 3.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 190.4, 161.6, 150.2, 143.4, 137.0, 135.1, 133.9, 132.0, 131.6, 131.1, 130.1, 129.6, 129.4, 127.8, 127.2, 126.8, 123.7, 121.4. HRMS (EI): Calcd for C₁₆H₁₀NO [M+H]⁺ 232.0762, found 232.0764.

3,3-Dimethyl-3,4-dihydro-2H-acridin-1-one

41

Yield: 67% M.p. 101-102°C. Lit m.p. $(101-102 °C)^{7}$ ¹H NMR (400 MHz, CDCl₃) δ 8.72 (s, 1H), 7.96 (d, J = 8.6 Hz, 1H), 7.83 (d, J = 8.1 Hz, 1H), 7.75 – 7.65 (m, 1H), 7.45 (t, J = 7.5 Hz, 1H), 3.11 (s, 2H), 2.56 (s, 2H), 1.06 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 197.4, 160.3, 149.5, 136.0, 131.7, 129.3, 128.1, 126.3, 126.2, 124.8, 52.0, 46.7, 32.3, 29.2, 27.9. HRMS (EI) Calcd for C₁₅H₁₆NO [M+H]⁺ 226.1232, found 226.1234.

1-(2-Methyl-3-quinolyl)-1-ethanone

Yield: 58% M.p. 72-74°C. Lit m.p. $(73-74 °C)^7$ ¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 7.98 (d, *J* = 8.5 Hz, 1H), 7.78 (d, *J* = 8.1 Hz, 1H), 7.75 – 7.68 (m, 1H), 7.48 (t, *J* = 7.5 Hz, 1H), 2.86 (s, 3H), 2.65 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 200.4, 158.0, 148.7, 138.8, 132.2, 131.4, 128.9, 128.7, 127.0, 125.9, 29.7, 26.1. HRMS (EI): Calcd for C₁₂H₁₂NO [M+H]⁺ 186.0919, found 186.0916.

1-(2-Phenylquinolin-3-yl)ethanone

Yield: 52% M.p. 131-133 (Lit m.p. 132-133)⁹ ¹H NMR (400 MHz, CDCl₃): δ 8.07 (d, J = 12.1 Hz, 1H), 7.86 – 7.70 (m, 2H), 7.70 – 7.39 (m, 5H), 7.22 (dq, J = 19.3, 6.8 Hz, 3H), 2.73 (s, 3H). ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 12.1 Hz, 1H), 7.86 – 7.70 (m, 3H), 7.70 – 7.39 (m, 5H), 7.22 (dq, J = 19.3, 6.8 Hz, 3H), 2.73 (s, 2H). HRMS (EI): Calcd for C₁₇H₁₄NO [M+H]⁺ 248.1075, found 248.1078.

3-(5-Undecene-1,3-diynyl)-2-oxa-10-aza-3,4-dihydroanthracen-1-one

Yield: 44% Waxy material ¹H NMR (400 MHz, CDCl3) δ 8.89 (s, 1H), 8.03 (d, J = 8.6 Hz, 1H), 7.91 (d, J = 8.1 Hz, 1H), 7.81 (t, J = 7.6 Hz, 1H), 7.56 (t, J = 7.5 Hz, 1H), 4.72 – 4.60 (m, 1H), 3.36 – 3.16 (m, 2H), 1.97 – 1.84 (m, 1H), 1.85 – 1.71 (m, 1H), 1.57 – 1.43 (m, 2H), 1.25 (d, J = 21.4 Hz, 16H), 0.84 (t, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 156.6, 149.3, 139.8, 132.2, 128.9, 128.3, 126.7, 118.5, 78.0, 36.6, 34.6, 31.5, 29.2, 29.1, 28.9, 24.5, 22.2, 13.7. HRMS (EI): Calcd for C₂₃H₃₂NO₂ [M+H]⁺ 354.2433, found 354.2436

- 1 D. B. Ramachary, M. Kishor and Y. V. Reddy, *Eur. J. Org. Chem.*, 2008, 975–993.
- 2 G. Wojack, Ber. Dtsch. Chem. G., 1938, 71B, 1102–1116.
- 3 K. Mitka, P. Kowalski, D. Pawelec and Z. Majka, Croat. Chem. Acta, 2009, 82, 613–618.
- 4 D. B. Ramachary and M. Kishor, J. Org. Chem., 2007, 72, 5056–68.
- 5 D. B. Ramachary and M. Kishor, Org. Biomol. Chem., 2008, 6, 4176–87.
- 6 M. J. Fehr, G. Consiglio, M. Scalone and R. Schmid, J. Org. Chem., 1999, 64, 5768–5776.
- 7 V. Sridharan, P. Ribelles, M. T. Ramos and J. C. Menéndez, J. Org. Chem., 2009, 74, 5715–5718.
- 8 N. H. Cromwell and R. A. Mitsch, J. Org. Chem., 1961, 26, 3812–3817.
- 9 E. A. Robinson and M. T. Bogert, J. Org. Chem., 1936, 1, 65–75.

-2.73

