Electronic Supplementary Information

Distinguishing Binding Modes of a New Phosphonium Dye with DNA by Surface-Enhanced Raman Spectroscopy

Snežana Miljanić,^{a,*} Adriana Kenđel,^a Morana Novak,^a Todor G. Deliqeorqiev,^b Ivo Crnolatac,^c Ivo Piantanida^c and Vasile Chiş^d

E-mail: miljanic@chem.pmf.hr

Figure S1. SERS spectra of the phosphonium dye/AT polynucleotide complex ([dye]/[poly dAdT–poly dAdT] = 1/10, $c(dye) = 5.0 \times 10^{-6}$ mol/L) in the silver colloid: three samples prepared in the same way (a, b and c) and the averaged spectrum (d). Excitation at 1064 nm. The spectra are displaced for visual clarity.

Conformer	ΔG (kcal/mol)	Boltzmann populations (%)	
cl	5.22	0.01	
c2_3	4.09	0.06	
c2_2	1.93	2.12	
c2_1	0.15	42.75	
c2_0	0.00	55.07	

Table S1. Relative free energies and Boltzmann populations of the investigated conformers of the dye in gas-phase at B3LYP/6-31G(d) level of theory

Table S2. B3LYP/pc-2 calculated ¹H NMR chemical shifts for the c1 and c2 conformers in DMSO

NMR data	¹ H NMR chemical shift (ppm)				
	Experimental ¹	Calculated			
		c1 ²⁺	c2 ²⁺	c2 ⁰	
m (2H, CH ₂)	2.07, 2.12	1.99, 2.41	1.98, 2.21	1.58, 1.95	
m (2H, CH ₂ P ⁺)	3.73, 3.78	2.98, 2.98	2.97, 3.06	2.64, 2.64	
t (2H, N–CH ₂)	4.63	4.36	4.41	2.31, 2.73	
s (3H, N–CH ₃)	4.2	4.15	4.09	2.66	
s (1H, CH)	6.53	6.24	6.75	4.58	
m (24H, Ar)	7.35-8.54	6.96-8.33	7.31-8.76	4.45-8.32	
Н53	-	11.46	8.67	5.39	

Scheme S1. B3LYP/gen optimized geometries of the phosphonium dye – 2I dimers (H C N O – 6-31G(d,p); I – SDB-cc-pVTZ basis set and ECP) (same orientation (top), opposite orientation (bottom)).

Figure S2. SERS spectra of the phosphonium dye during time: a) 5.0×10^{-5} mol/L after 2 min, b) 5.0×10^{-5} mol/L after 50 min, c) 5.0×10^{-6} mol/L after 2 min, and d) 5.0×10^{-6} mol/L after 50 min. Excitation at 1064 nm. The spectra are displaced for visual clarity. The baseline of the SERS spectrum (d) was corrected.

Figure S3. SERS spectra of: a) the silver colloid and b) the silver colloid containing poly dA– poly dT, $c = 1.0 \times 10^{-5}$ mol/L.

Figure S4. SERS spectra of the phosphonium dye/AT polynucleotide complexes during time: a) [dye]/[poly dA–poly dT] = 1/10 after 2 min, b) [dye]/[poly dA–poly dT] = 1/10 after 50 min, c) [dye]/[poly dAdT–poly dAdT] = 1/10 after 2 min, d) [dye]/[poly dAdT–poly dAdT] = 1/10 after 50 min, e) [dye]/[poly dA–poly dT] = 1/2 after 2 min, f) [dye]/[poly dA–poly dT] = 1/2 after 50 min, g) [dye]/[poly dAdT–poly dAdT] = 1/2 after 2 min, and h) [dye]/[poly dAdT–poly dAdT] = 1/2 after 50 min; c(dye)_{complex} = 5.0×10^{-6} mol/L. Excitation at 1064 nm. The spectra are displaced for visual clarity.

References

(1) L.-M. Tumir, I. Crnolatac, T. Deligeorgiev, A. Vasilev, S. Kaloyanova, M. Grabar Branilović, S. Tomić and I. Piantanida, *Chem. Eur. J.*, 2012, **18**, 3859–3864.