Electronic Supplementary Information

Alkylguanidinium Based Ionic Liquids in a Screening Study for the Removal of Anionic Pollutants from Aqueous Solution

Roza Bouchal, Bénédicte Prelot and Peter Hesemann*

Content

1.	Characterization methods	2
2.	Synthesis and characterization of the guanidinium based ionic liquids	2
3.	¹ H liquid NMR spectra of Guanidinium type ionic liquids (solvent:MeOD)	4
4.	¹³ C liquid NMR spectra of Guanidinium type ionic liquids (solvent:MeOD)	6
5.	HRMS [ESI+] of Guanidinium type ionic liquids	8
6.	Viscosities of the Guanidinium based ionic liquids	10
7.	¹ H liquid NMR spectra of the C ₆ Gua (NTf ₂) _{0.9} (MO) _{0.1} phase (solvent:MeOD)	11
8.	¹ H and ¹³ C liquid NMR spectra of the recovered C ₆ Gua (NTf ₂) phase	12
9.	Water content of dried and water saturated ionic liquids	14
10.	Table 1 <i>bis</i>	15
11.	Table 2 <i>bis</i>	15
12.	Table 3 <i>bis</i>	16
13.	Extraction of diclofenac (DCF) and Chromate using C ₆ Gua NTf ₂ in high anion/IL ratios	16
14.	Extraction of diclofenac (DCF) and Chromate using the imidazolium IL C ₄ mim NTf ₂ in low anion/II	
ratio	s	17
15.	Regeneration of chromate with C6GuaNTf2 ionic liquid	18
16.	¹ H liquid NMR spectra of the recovered C ₆ Gua (NTf ₂) in ether phase	19
17.	DSC thermograms of Guanidinium type ionic liquids	20

1. Characterization methods

NMR analyses were performed using a Bruker 200 and 300 MHz NMR spectrometer. Deuterated methanol was used as solvent. Chemical shifts are expressed in parts per million (ppm) relative to TMS. The multiplicity of the signals is indicated by the following abbreviations: s (singlet), d (doublet), t (triplet) and m (multiplet). Time of flight (TOF) mass spectrometry analysis was carried out on a mass spectrometer Synapt G2 -S (Waters) equipped with an ESI source. Mass spectra were recorded in the positive ion mode between 100 and 1500 Da. The capillary voltage was 1000 V and the cone voltage 30 V. The temperature of the ion source and desolvation were 120 °C and 250 °C, respectively. Fourier transform infrared (FTIR) spectra were recorded in the 4000-400 cm⁻¹ range using 32 scans at a nominal resolution of 4 cm⁻¹ by means of an AVATAR 320 FTIR spectrometer equipped with an ATR unit. Differential Scanning Calorimetry measurements were carried out on a NETSCH DSC 204-F1 apparatus. DSC thermograms were recorded on raising the temperature from -120 to 150 °C at a heating rate of 10 °C/min under nitrogen atmosphere. Thermogravimetric analyses analysis (TGA) TGA was carried out using a NETSCH 409 PC under air atmosphere. Compounds were heated to from room temperature to 1000 °C at 10 UV-Vis absorption spectra were recorded on a UV-SPECORD °C/min. 210 spectrophotometer (Analytik Jena). Karl Fischer measurements were carried out on Titroline KF trace instrument using hydranal® coulomat E from Sigma Aldrich as Karl Fischer solution. Viscosity measurements were performed with a classical rheological test in plate geometry with 6 cm of diameter and at 200µm in height, the shear rate was fixed at 5 s⁻¹ using a AR2000 rheometer (TA Instruments).

2. Synthesis and characterization of the guanidinium based ionic liquids

The guanidinium *bis*-trifluoromethane sulfonimides were obtained by reacting the primary amines with 1*H*-pyrazole-1-carboxamidine hydrochloride and subsequent anion exchange. As an example, the hexylguanidinium *bis*-trifluoromethane sulfonimide (C_6 Gua NTf₂) was obtained as follows. Hexylamine (18.9 mmol, 1.91 g) and *1H*-pyrazole-1-carboxamidine hydrochloride (17.3 mmol, 2.54 g) were dissolved in methanol (30 mL). The resulting homogeneous solution was stirred during 15h at room temperature. After this time, the solvent was evaporated, and the formed pyrazole was eliminated by sublimation. The resulting guanidinium chloride was dissolved in water and mixed with an aqueous solution of lithium *bis*-trifluoromethane sulfonimide. The title compound demixed from the aqueous solution and was obtained by extraction with dichloromethane. After solvent evaporation, C_6 Gua NTf₂ was obtained as a moderately viscous and colorless liquid. Yield: 6.66g/91%.

C₆Gua NTf₂: ¹H NMR (MeOH-d₄): $\delta = 0.96$ (3H, m); 1.38 (6H, m); 1.62 (2H, m); 3.19 (2H, 't'). ¹³C NMR (MeOH-d₄): $\delta = 13.35$; 22.53; 26.27; 28.71; 31.46; 41.58; 120.13 (q, J = 320Hz); 157.47. FT-IR (neat) v_{max} /cm⁻ 3461, 3372, 3304, 3233, 2960, 2935, 2863, 1658, 1625, 1607, 1343, 1186, 1129, 1050. HRMS [ESI+] calcd. for C₇H₁₈N₃ (M)⁺ 144.1501; found 144.1503.

C₈Gua NTf₂: ¹H NMR (MeOH-d₄): δ = 0.93 (3H, m); 1.37 (10H, m); 1.58 (2H, m); 3.19 (2H, 't'). ¹³C NMR (MeOH-d₄): δ = 13.50; 22.68; 26.61; 28.76; 29.23; 29.26; 31.90; 41.59; 120.12 (q, *J* = 320Hz); 157.44. FT-IR (neat): ν_{max}/cm⁻¹ 3461, 3373, 3308, 3240, 2929, 2859, 1658, 1626, 1343, 1187, 1130, 1051. HRMS [ESI+] calcd. for C₉H₂₂N₃ (M)⁺ 172.1814; found 172.1815.

 $\begin{array}{l} C_{10} Gua \ NTf_2: \ ^1H \ NMR \ (MeOH-d_4): \ \delta = 0.91 \ (3H, \ m); \ 1.32 \ (14H, \ m); \ 1.60 \ (2H, \ m); \ 3.17 \ (2H, \ ^t). \ ^{13}C \ NMR \ (MeOH-d_4): \ \delta = 13.03; \ 22.31; \ 26.26; \ 28.45; \ 28.90; \ 29.01, \ 29.23 \ (2H); \ 31.63; \ 41.10; \ 119.80 \ (q, \ J = 320Hz); \ 157.16. \ FT-IR \ (neat): \ \nu_{max}/cm^{-1} \ 3461, \ 3372, \ 3306, \ 3233, \ 2927, \ 2857, \ 1658, \ 1625, \ 1344, \ 1189, \ 1130, \ 1052. \ HRMS \ [ESI+] \ calcd. \ for \ C_{11}H_{26}N_3 \ (M)^+ \ 200.2127; \ found \ 200.2128. \end{array}$

 C_8 Gua NTf₂

4. ¹³C liquid NMR spectra of Guanidinium type ionic liquids (solvent:MeOD) C₆Gua NTf₂

 C_8 Gua NT f_2

5. HRMS [ESI+] of Guanidinium type ionic liquids

C₆Gua NTf₂

 C_8 Gua NTf₂

 C_{10} Gua NT f_2

Sample	Viscosity (cP)
C_4 Gua NT f_2^*	264
C_6 Gua NT f_2	421
C_8 Gua NT f_2	n.d.
C_{10} Gua NTf ₂	479
for comparison:	
C ₄ MIM NTf ₂	69

6. Viscosities of the Guanidinium based ionic liquids

*This compound is not further discussed in this manuscript

7. ¹H liquid NMR spectra of the C₆Gua (NTf₂)_{0.9}(MO)_{0.1} phase (solvent:MeOD)

8. ¹H and ¹³C liquid NMR spectra of the recovered C_6Gua (NTf₂) phase

Original spectrum

Original spectrum

Sample	Water content (dried)	Water content (saturated)		
C_6 Gua NT f_2	300 ppm	22500 ppm		
C_8 Gua NT f_2	300 ppm	21400 ppm		
C_{10} Gua NTf ₂	500 ppm	22200 ppm		

9. Water content of dried and water saturated ionic liquids

10. Table 1*bis*

Entry	Quantity of IL /mg (mmol)	Quantity of MO /mg (µmol) ^a	MO/IL ratio	Percentage of extracted anion / %	Quantity of extracted anion / µmol	Quantity of extracted anion / μg	
			with C_6 Gua NTf	2			
1	100.6 (0.237)	0.76 (2.33)	0.01	99.4%	2.32	0.76	
2	100 (0.236)	1.60 (4.90)	0.02	99.6%	4.88	1.60	
3	101.1 (0.238)	3.23 (9.88)	0.04	99.8%	9.86	3.23	
6	100.7 (0.237)	7.80 (23.84)	0.10	99.9%	23.82	7.80	
			with C8Gua NTf	2			
5	100.5 (0.222)	0.73 (2.24)	0.01	99.5%	2.23	0.73	
6	100.6 (0.222)	1.47 (4.5)	0.02	99.7%	4.49	1.47	
7	100.1 (0.221)	2.93 (8.96)	0.04	99.8%	8.94	2.93	
8	101 (0.221)	7.27 (22.2)	0.10	99.9%	22.18	7.26	
			with C_{10} Gua NTf	2			
9	100.3 (0.209)	0.69 (2.1)	0.01	99.6%	2.09	0.68	
10	100 (0.208)	1.36 (4.15)	0.02	99.7%	4.14	1.36	
11	100.2 (0.209)	2.74 (8.38)	0.04	99.8%	8.37	2.74	
12	100.1 (0.208)	6.81 (20.79)	0.10	100.0%	20.79	6.80	
			with C4mim NTf2	2			
13	104.5 (0.249)	0.80 (2.43)	0.01	22.39%	0.03	0.01	
14	110.6 (0.264)	1.55 (4.74)	0.02	23.79%	0.08	0.02	
15	102.3 (0.244)	3.15 (9.61)	0.04	19.04%	0.17	0.06	
16	105.5 (0.252)	7.75 (23.7)	0.09	25.56%	0.42	0.14	

11. Table 2*bis*

Entry	Quantity of IL /mg (µmol)	of Quantity of MO /mg MO/IL rati (µmol) ^a		ity of (μmol) Quantity of Percentage of MO /mg MO/IL ratio extracted (μmol) ^a anion / %		Percentage of extracted anion / %	Quantity of extracted anion / µmol	Quantity of extracted anion / mg
			with $C_6Gua NTf_2$					
1	10 (23.56)	1.58 (4.83)	0.20	99.1%	4.79	1.57		
2	9.9 (23.33)	3.24 (9.91)	0.42	99.3%	9.84	3.22		
3	10.3 (24.27)	4.88 (14.91)	0.61	99.2%	14.79	4.84		
4	10.1 (23.8)	6.49 (19.83)	0.83	98.8%	19.59	6.41		
5	10.4 (24.51)	7.82 (23.89)	0.97	87.9%	20.99	6.87		
			with C_8 Gua NTf ₂					
6	10 (22.1)	1.46 (4.47)	0.20	100.0%	4.47	1.46		
7	10.5 (23.21)	2.92 (8.93)	0.38	100.0%	8.92	2.92		
8	10 (22.1)	4.35 (13.3)	0.60	100.0%	13.27	4.35		
9	10.2 (22.55)	5.81 (17.8)	0.79	99.9%	17.74	5.81		
10	10.4 (22.99)	7.29 (22.3)	0.97	94.5%	21.03	6.88		
			with C_{10} Gua NTf ₂					
11	10.2 (21.23)	1.36 (4.16)	0.20	100.0%	4.16	1.36		
12	10.4 (21.65)	2.73 (8.34)	0.39	100.0%	8.34	2.73		
13	10 (20.81)	4.09 (12.5)	0.60	99.9%	12.49	4.09		
14	10.2 (20.23)	5.45 (16.6)	0.78	100.0%	16.64	5.45		
15	10 (20.81)	6.86 (21)	1.01	94.8%	19.86	6.50		

12. Table 3bis

Entry	Quantity of IL /mg (mmol)	Quantity of anionic species /mg (µmol)ª	Anion/IL ratio	Percentage of extracted anion / %	Quantity of extracted anion / µmol	Quantity of extracted anion / mg	
			DCF				
1	99.8 (0.235)	0.9 (2.74)	0.01	96.4%	2.64	0.84	
2	101.7 (0.24)	1.79 (5.45)	0.02	98.8%	5.39	1.71	
3	99.9 v(0.235)	3.61 (11.01)	0.05	99.6%	10.97	3.49	
4	102.3 (0.241)	5.4 (16.5)	0.07	99.4%	16.41	5.22	
5	101.8 (0.24)	6.95 (21.85)	0.09	99.6%	21.69	6.90	
6	101.3 (0.239)	8.62 (27.1)	0.11	99.5%	26.94	8.57	
			Chromate				
7	107.9 (0.254)	0.466 (2.4)	0.01	68.8%	1.65	0.32	
8	103.2 (0.243)	0.858 (4.42)	0.02	66.2%	2.93	0.57	
9	102.1 (0.241)	1.7 (8.76)	0.04	62.4%	5.47	1.06	
10	102.4 (0.241)	2.52 (12.98)	0.05	58.3%	7.57	1.47	
11	101.3 (0.239)	3.36 (17.3)	0.07	53.5%	9.25	1.80	
12	101.9(0.24)	4.28 (22.04)	0.09	59.5%	9.53	1.85	

13. Extraction of diclofenac (DCF) and Chromate using C₆Gua NTf₂ in high anion/IL ratios

Entry	Quantity of Quantity IL /mg anionic sp (mmol) /mg (µmo	of Anion/IL ecies ratio	C _{init} / mmol/L	C _{eq} / mmol/l	L Distribution coefficient D	Percentage of extracted anion / %	Quantity of extracted anion / µmol	Quantity of extracted anion / mg
			D	CF				
1	101 (23.8) 7.63 (23.9	99) 0.10	7.918	0.0504	156.17	99.4%	23.8	7.58
2	100.2 (23.61) 15.2 (47.7	(78) 0.20	15.754	0.1124	139.11	99.3%	47.4	15.09
3	100.6 (23.71) 30.48 (95	.82) 0.40	31.776	0.3485	90.17	98.9%	94.8	30.15
4	102.3 (24.11) 46.72 (14	6.9) 0.61	48.384	1.1406	41.42	97.6%	143.4	45.62
5	100.8 (23.75) 60.52 (19	0.2) 0.80	63.186	4.2482	13.87	93.3%	177.4	56.45
6	101.2 (23.85) 75.92 (23	8.7) 1.00	76.947	13.0286	4.91	83.1%	198.2	63.07
			Chra	mate				
7	102.6 (0.242) 4.77 (24.	56) 0.10	12.26	4.97	1.468	59.5%	0.68	0.13
8	101.5 (0.239) 8.99 (46.1	28) 0.19	23.12	13.53	0.709	41.5%	1.70	0.33
9	100 (0.236) 17.95 (92	.43) 0.39	45.83	29.16	0.572	36.4%	6.03	1.17
10	100.1 (0.236) 26.5 (136	.47) 0.58	67.54	48.75	0.386	27.8%	10.05	1.95
11	100.8 (0.238) 36.34 (187	(.15) 0.79	92.74	68.39	0.356	26.3%	17.72	3.44
12	100.2 (0.236) 43.88 (225	6.98) 0.96	111.17	77.27	0.439	30.5%	30.18	5.86

14. Extraction of diclofenac (DCF) and Chromate using the imidazolium IL $C_4 mim \ NTf_2$ in low anion/IL ratios

Entry	Quantity of IL /mg (mmol)	Quantity of anionic species /mg (µmol)ª	Anion/IL ratio	C _{init} / mmol/L	C _{eq} / mmol/L	Distribution coefficient D	Percentage of extracted anion / %	Quantity of extracted anion / µmol	Quantity of extracted anion / mg
					DCF				
1	100.5 (0.24)	0.87 (2.73)	0.01	0.907	0.913	0.000	0.0%	0	0
2	100.3 (0.239)	1.74 (5.46)	0.02	1.819	1.728	0.053	5.0%	0.27	0.09
3	100.1 (0.239)	3.49 (10.95)	0.05	3.649	3.532	0.033	3.2%	0.35	0.11
4	100.1 (0.239)	5.19 (16.32)	0.07	5.442	5.226	0.041	4.0%	0.65	0.21
5	100.2 (0.239)	6.95 (21.85)	0.09	7.242	7.116	0.018	1.7%	0.15	0.05
6	100.2 (0.239)	8.62 (27.1)	0.11	9.024	8.687	0.039	3.7%	1.17	0.37
					Chroma	ıte			
7	101.5 (0.242)	0.464 (2.39)	0.01	1.196	1.187	0.0075	0.7%	0.02	0.00
8	101.8 (0.243)	0.932 (4.8)	0.02	2.383	2.304	0.0344	3.3%	0.16	0.03
9	100.4 (0.239)	1.86 (9.56)	0.04	4.768	4.607	0.0351	3.4%	0.32	0.06
10	100 (0.238)	2.8 (14.41)	0.06	7.172	7.173	0	0%	0	0.00
11	101.6 (0.242)	3.71 (19.08)	0.08	9.513	9.523	0	0%	0	0.00
12	100.4 (0.239)	4.67 (24.02)	0.10	11.925	11.752	0.0147	1.4%	0.35	0.07

15. Regeneration of chromate with $C_6GuaNTf_2$ ionic liquid

IL after extraction

16. ¹H liquid NMR spectra of the recovered C₆Gua NTf₂ from the ether phase

Original spectrum

17. DSC thermograms of Guanidinium type ionic liquids

 C_8 Gua NTf₂

Lab: METTLER