Supporting Information For:

Multi-color solid-state emission of β-iminoenolate boron complexes tuned by methoxyl group: Aggregation-induced emission and mechanofluorochromism

Zhenqi Zhang, Zhu Wu, Jingbo Sun, Pengchong Xue and Ran Lu*

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry,

Jilin University, Changchun 130012, P. R. China

Fax: +86-431-88923907; *Tel:* +86-431-88499179 *E-Mail:* <u>luran@mail.jlu.edu.cn</u>

Compound	Solvents	$\lambda_{abs}{}^a$	$\lambda_{em}{}^a$	Stokes shift (cm ⁻¹)	$\Phi_{F}{}^{b}$
BB	Cyclohexane	351(39911)	410	4100	0.01
	Toluene	355(35400)	428	4805	0.01
	THF	352(39854)	425	4880	0.01
	DCM	351(39659)	430	5234	0.01
	DMF	352(36760)	427	4990	0.01
B2B	Cyclohexane	355(47654), 369(46107)	409	3719	0.01
	Toluene	359(42167), 372(42695)	430	3626	0.01
	THF	358(39913), 371(40282)	425	3425	0.01
	DCM	358(44032), 371(44766)	428	3590	0.01
	DMF	360(41248), 371(42056)	425	3425	0.01
B3B	Cyclohexane	355(30268)	409	3719	0.01
	Toluene	357(40127)	430	4755	0.01
	THF	355(37232)	427	4750	0.01
	DCM	355(44016)	427	4750	0.01
	DMF	356(42415)	427	4671	0.01
B4B	Cyclohexane	360(36907), 370(35739)	426	4304	0.02
	Toluene	363(46425), 374(46049)	433	4453	0.02
	THF	362(48707), 371(48064)	430	4368	0.02
	DCM	361(51712), 373(50802)	430	4445	0.02
	DMF	363(47760), 375(47763)	433	3572	0.03
B24B	Cyclohexane	374(38344)	426	3264	0.02
	Toluene	378(47020)	433	3360	0.03
	THF	378(50606)	431	3253	0.03
	DCM	378(49495)	433	3360	0.03
	DMF	378(47045)	437	3572	0.04
B25B	Cyclohexane	345(22374), 379(29834)	431	3183	0.02
	Toluene	347(18884), 385(26292)	444	3451	0.06
	THF	346(25641), 381(32513)	453	4172	0.08
	DCM	346(21689), 383(27400)	456	4180	0.11
	DMF	347(20239), 383(24617)	474	5013	0.29
B345B	Cyclohexane	365(33488)	433	4303	0.03
	Toluene	366(36134)	444	4800	0.04
	THF	365(26825)	442	4773	0.04
	DCM	364(39444)	444	4950	0.03
	DMF	368(37615)	446	4752	0.06

Table S1. Photophysical properties of β -iminoenolate boron complexes in solution.

^a The maximum absorption and fluorescence emission wavelength in solution (1 × 10⁻⁵ M), ^b The fluorescence quantum yield (Φ_F) was measured using quinine sulfate in H₂SO₄ (0.1 M) (Φ_F = 0.55) as standard.

	In THF		In THF/H ₂ O		In solid	
	$\lambda_{em}{}^{a}\left(nm ight)$	$\Phi_F{}^{b}$	$\lambda_{em}(nm)$ (%) ^c	I/I ₀	$\lambda_{em}^{d} (nm)$	$\lambda_{em}{}^{e}\left(nm\right)$
BB	425	0.01	468 (90)	44	478	476
B2B	425	0.01	436,459 (95)	91	439	461
B3B	427	0.01	471 (80)	48	462	473
B4B	430	0.02	480,550 (90)	12	480, 550	480, 550
B24B	431	0.03	476 (95)	11	471	470
B25B	453	0.08	476 (80)	1.2	466	500
B345B	442	0.04	500 (90)	2.6	505	512

Table S2. Emitting properties of β -iminoenolate boron complexes in THF and aggregation states.

^a The maximum fluorescence emission wavelength in THF solution $(1 \times 10^{-5} \text{ M})$, ^b The fluorescence quantum yield (Φ_F) in THF using quinine sulfate in H₂SO₄ (0.1M) ($\Phi_F = 0.55$) as standard, ^c The maximum emission intensity in THF/H₂O and the corresponding water content, ^d The maximum emission wavelength of the as-synthesized powder, ^e The maximum emission wavelength of the single crystal.

Table S3. Fluorescence lifetimes of B4B in solutions and in solid states.

State	Wavelength (nm)	Lifetime (ns)	
In THF	430	0.48	
In THF/H ₂ O ($v/v = 2/8$)	480	18.54	
In THF/H ₂ O ($v/v = 1/9$)	480	13.28	
	550	23.68	
Crystal	480	10.47	
	550	16.89	
Ground powder 1	505	14.87	
Ground powder 2	450	3.20	

Figure S1. Normalized UV-vis (a) and PL spectra (b) ($\lambda_{ex} = 365$ nm) of **BB** in different solvents (1 × 10⁻⁵ mol/L).

Figure S2. Normalized UV-vis (a) and PL spectra (b) ($\lambda_{ex} = 365 \text{ nm}$) of B2B in different solvents (1 × 10⁻⁵ mol/L).

Figure S3. Normalized UV-vis (a) and PL spectra (b) ($\lambda_{ex} = 365 \text{ nm}$) of B3B in different solvents (1 × 10⁻⁵ mol/L).

Figure S4. Normalized UV-vis (a) and PL spectra (b) ($\lambda_{ex} = 365 \text{ nm}$) of B4B in different solvents (1 × 10⁻⁵ mol/L).

Figure S5. Normalized UV-vis (a) and PL spectra (b) ($\lambda_{ex} = 365$ nm) of B24B in different solvents (1×10^{-5} mol/L).

Figure S6. Normalized UV-vis (a) and PL spectra (b) ($\lambda_{ex} = 365$ nm) of B345B in different solvents (1 × 10⁻⁵ mol/L).

Figure S7. Cyclic voltammograms of BB, B2B, B3B, B4B, B24B, B25B and B345B measured in CH_2Cl_2 with Bu_4NBF_4 (0.1 M) as electrolyte at a scan rate of 50 mV/s.

Figure S8. The frontier orbital plots of the HOMO/LUMO and the energy levels of the HOMO/LUMO obtained using electrochemical method (red) and DFT calculation (black).

Figure S9. (a) UV-vis absorption and (b) fluorescence emission spectra ($\lambda_{ex} = 365$ nm) of **B2B** (5 × 10⁻⁵ M) in THF/H₂O with different amounts of water (% volume), (c) a plot of PL integral versus water content of the solvent mixture for **B2B** and (d) photograph of **B2B** (5 × 10⁻⁵ M) in THF/H₂O with different contents of water (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95%) under UV light.

Figure S10. (a) UV-vis absorption and (b) fluorescence emission spectra ($\lambda_{ex} = 365$ nm) of **B3B** (5 × 10⁻⁵ M) in THF/H₂O with different amounts of water (% volume), (c) a plot of PL integral versus water content of the solvent mixture for **B3B** and (d) photograph of **B3B** (5 × 10⁻⁵ M) in THF/H₂O with different contents of water (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95%) under UV light.

Figure S11. (a) UV-vis absorption and (b) fluorescence emission spectra ($\lambda_{ex} = 365$ nm) of **B24B** (5 × 10⁻⁵ M) in THF/H₂O with different amounts of water (% volume), (c) a plot of PL integral versus water content of the solvent mixture for **B24B** and (d) photograph of **B24B** (5 × 10⁻⁵ M) in THF/H₂O with different contents of water (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95%) under UV light.

Figure S12. (a) UV-vis absorption and (b) fluorescence emission spectra ($\lambda_{ex} = 365$ nm) of **B25B** (5 × 10⁻⁵ M) in THF/H₂O with different amounts of water (% volume), (c) a plot of PL integral versus water content of the solvent mixture for **B25B** and (d) photograph of **B25B** (5 × 10⁻⁵ M) in THF/H₂O with different contents of water (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95%) under UV light.

Figure S13. (a) UV-vis absorption and (b) fluorescence emission spectra ($\lambda_{ex} = 365$ nm) of **B345B** (5 × 10⁻⁵ M) in THF/H₂O with different amounts of water (% volume), (c) a plot of PL integral versus water content of the solvent mixture for **B345B** and (d) photograph of **B345B** (5 × 10⁻⁵ M) in THF/H₂O with different contents of water (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95%) under UV light.

Figure S14. Time-resolved emission decay curves of **B4B** in THF monitored at 430 nm (a); in THF/H₂O (v/v = 2/8) monitored at 480 nm (b); in THF/H₂O (v/v = 1/9) monitored at 480 nm (c); in THF/H₂O (v/v = 1/9) monitored at 550 nm (d); in crystal state monitored at 480 nm (e); in crystal state monitored at 550 nm (f); in ground powder 1 monitored at 505 nm (g) and in ground powder 2 monitored at 450 nm (h).

Figure S15. SEM images of the aggregates gained from **B4B** in THF/H₂O with water content of 80% (a) and 90% (b); SEM images of the fibres generated from **B4B** in THF/H₂O with water content of 80% (c, e) and 90% (d, f); SEM images of the blocky structures generated from **B4B** in THF/H₂O with water content of 80% (g, i) and 90% (h, j).

Figure S16. (a) Crystal structure of B3B viewed along a axis; (b) crystal structure of B3B, intermolecular forces (blue line) and distances between molecules (pink arrow); (c) ORTEP view and list of intermolecular forces.

Figure S17. (a) Crystal structure of B24B viewed along b axis; (b) crystal structure of B24B viewed along a axis, intermolecular forces (blue line) and distances between molecules (pink arrow); (c) ORTEP view and list of intermolecular forces.

Figure S18. (a) Crystal structure of B25B viewed along a axis; (b) crystal structure of B25B viewed along b axis; (c) intermolecular forces (blue line); (d) ORTEP view and list of intermolecular forces.

Figure S19. XRD patterns of B4B in different solid states.

Figure S20. ¹H NMR (400 MHz) spectrum of compound BB in DMSO-d₆

Figure S21. ¹³C NMR (100 MHz) spectrum of compound BB in DMSO-d₆

Figure S22. MALDI/TOF MS spectrum of compound BB.

Figure S23. ¹H NMR (400 MHz) spectrum of compound B2B in DMSO-d₆

Figure S24. ¹³C NMR (100 MHz) spectrum of compound B2B in DMSO-d₆

Figure S25. MALDI/TOF MS spectrum of compound B2B

Figure S26. ¹H NMR (400 MHz) spectrum of compound B3B in DMSO-d₆

Figure S27. ¹³C NMR (100 MHz) spectrum of compound B3B in DMSO-d₆

Figure S28. MALDI/TOF MS spectrum of compound B3B.

Figure S29. ¹H NMR (400 MHz) spectrum of compound B4B in DMSO-d₆

Figure S30. ¹³C NMR (100 MHz) spectrum of compound B4B in DMSO-d₆

Figure S31. MALDI/TOF MS spectrum of compound B4B.

Figure S32. ¹H NMR (400 MHz) spectrum of compound B24B in DMSO-d₆

Figure S33. ¹³C NMR (100 MHz) spectrum of compound B24B in DMSO-d₆

Figure S34. MALDI/TOF MS spectrum of compound B24B.

Figure S35. ¹H NMR (400 MHz) spectrum of compound B25B in DMSO-d₆

Figure S36. ¹³C NMR (100 MHz) spectrum of compound B25B in DMSO-d₆

Figure S37. MALDI/TOF MS spectrum of compound B25B.

Figure S38. ¹H NMR (400 MHz) spectrum of compound B345B in DMSO-d₆

Figure S39. ¹³C NMR (100 MHz) spectrum of compound B345B in DMSO-d₆

Figure S40. MALDI/TOF MS spectrum of compound B345B.