Discovery of vascular endothelial growth factor receptor tyrosine kinase inhibitors by quantitative structure–activity relationships, molecular dynamics simulation and free energy calculation

Juan Wang^{a,b}, Mao Shu^{*,a}, Xiaorong Wen^a, Yuanliang Wang^b, Yuanqiang Wang^a, Yong Hu^a, Zhihua Lin^{*,a,c}

^a School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; ^b Key Laboratory of Biorheological Science and Technology (Ministry of Education), Research Center of Bioinspired Material Science and Engineering, Bioengineering College, Chongqing University, Chongqing 400044, China; ^c College of chemistry and chemical engineering, Chongqing University, Chongqing 400044

Supplementary Materials

Materials of contents

- 1. Table S1. Molecular Structures and Inhibitory Activities (pIC50) for KDR Inhibitors
- 2. Table S2 Ten Atomic Types and 55 Atomic Interactions in 3D-HoVAIF
- 3. Table S3. Molecular Structures of Designed Analogs
- 4. Table S4. ADMET Properties Prediction of Designed Analogs
- 5. Table S5. Molecular Structures of Potent KDR Inhibitors with High Inhibitory Activity
- 6. Table S6. The Primary Targets of Potent Inhibitors Identified from Reverse Screening Approaches
- **7. Figure S1.** Binding conformations of compound 10 from MD simulated(purple) and the cocrystallized compound 10(cyan) at the active sites of KDR.
- 8. Figure S2. The average structures from 0 to 75ns(magenta, a), 75 to 85 ns(cyan, b), 85 to 88 ns(purple, c) and 88 to 100 ns(pink, d) MD trajectories of compound 10. (e) Superimposition of the four average structures.
- 9. Figure S3. The residue interaction spectrum for potent KDR inhibitors.

14-39, 44-51 40: X1=X3=CH, X2=F, X4=O 52-60 41: X1=CH, X2=H, X3=N, X4=O 42: X1=N, X2=H, X3= CH, X4=O

	43: X1=X3=CH, X2=	H, X4=NH			
NO	R ₁	R ₂	Obsd ^b	Cald1 ^c	Error
1			8.52	8.27	-0.25
2			7.74	7.20	-0.54
3*			8.15	7.75	-0.4
4			6.51	6.74	0.23
5	$[]_{N^{\prime}}^{\overline{\downarrow}}_{N^{\prime}}_{H^{\prime}}$		7.34	7.29	-0.05
6			7.70	7.25	-0.45
7*			7.55	7.56	0.01
8			8.40	9.04	0.64
9	N N		9.00	8.83	-0.17
10			9.31	8.95	-0.36
11	O F		7.70	7.95	0.25
12*			9.70	9.56	-0.14
13			8.70	8.50	-0.2
14	Ph		9.70	9.62	-0.08
15	2-F-Ph		8.70	8.48	-0.22
16 [*]	3-F-Ph		9.22	8.48	-0.74

17*	4-F-Ph		9.00	8.87	-0.13
18*	3-Cl-Ph		9.52	9.12	-0.4
19	4-Me-Ph		9.30	9.43	0.13
20	3-CF3-Ph		9.30	8.87	-0.43
21*	4-CF3-Ph		9.30	9.27	-0.03
22*	4-t-Bu-Ph		9.15	8.61	-0.54
23	2,4-Cl-Ph		8.70	9.29	0.59
24	3,5-Cl-Ph		9.52	9.92	0.4
25	3-CF3-4-Cl-Ph		9.00	9.32	0.32
26	2-Pyridyl		9.10	9.21	0.11
27	3-Pyridyl		9.10	8.47	-0.63
28	4-Pyridyl		8.70	8.55	-0.15
29*	2-Thiazolyl		9.52	9.54	0.02
30	3-Isoxazole		9.70	10.20	0.5
31	5-Methyl-3-isoxazolyl		9.22	9.27	0.05
32	3-Methyl-5-isoxazolyl		9.00	9.01	0.01
33	5-tert-Butyl-3-isoxazolyl		9.10	8.90	-0.2
34	Cyclopropyl		9.22	8.89	-0.33
35	1-Methylcyclopropyl		7.82	8.28	0.46
36	Cyclobutyl		8.67	8.71	0.04
37	Cyclopentyl		7.92	8.34	0.42
38	Propyl		8.89	8.53	-0.36
39	Isopropyl		8.26	8.42	0.16
40			9.52	9.21	-0.3:
41			7.66	8.49	0.83
42			7.64	8.51	0.87
43*			8.10	8.13	0.03
44*	Cyclopropylmethyl		7.96	8.11	0.15
45	Methyl		8.42	8.19	-0.23
46*	Ethyl		8.89	8.29	-0.60
47	t-Butyl		5.82	6.65	0.83
48	2-Trifluoroethyl		8.42	8.32	-0.1
49 [*]	2-Methoxyethyl		7.92	7.66	-0.26
50	3-Methoxypropyl		8.38	8.29	-0.09
51*	Н		9.05	9.01	-0.04
52	Cyclopropyl		8.54	8.40	-0.14
	2-Methoxyethyl		6.50	6.98	0.48
53					
54*	н	G 11	8.89	8.68	-0.21
55	Cyclopropyl		9.35	8.23	-1.12
55					
56	2-Methoxyethyl		7.55	7.48	-0.07

58	Cyclopropyl	0 —	9.43	9.59	0.16
59	2-Methoxyethyl		7.66	8.00	0.34
	Н	H ₂ N	8.89	8.97	0.08
60					
		0 · N			
61*	Ph		9.00	8.87	-0.13
62	2-Me-Ph		9.00	8.79	-0.21
63	3-Me-Ph		9.00	8.51	-0.49
64	4-Me-Ph		9.70	8.79	-0.91
65	2-Cl-Ph		7.72	7.63	-0.09
66	3-Cl-Ph		9.00	9.09	0.09
67	4-Cl-Ph		9.30	9.08	-0.22
68	4-F-Ph		8.52	8.49	-0.03
69	н		7.24	7.25	0.01
70	Methyl		7.40	7.02	-0.38
71*	Ethyl		9.00	8.98	-0.02
72	i-Propyl		7.40	7.06	-0.34
73	Bn		7.28	7.65	0.37
74*	4-Me-Bn		7.59	7.89	0.3
75	(S)-Me-Bn		9.00	8.45	-0.55
76	(R)-Me-Bn		7.40	7.97	0.57
77	Cl	0 —	9.22	8.82	-0.4
70	Me	H ₂ N	9.30	9.61	0.31
/0		O N			
79	Cl	<u> </u>	7.11	7.28	0.17
	Me		7.59	7.75	0.16
80		N N			
		Ĥ N			
81	Cl	$\overline{\top}$	7.02	7.70	0.68
		н			
82*	Me		7.21	7.66	0.45
		U II			

Table S2 Ten Atomic	Types and 55	Atomic Interaction	ns in 3D-HoVAIF

	Table S2 1	en Ato	omic Ty	pes an	d 55 Ato	omic Int	teractio	ns in 3L	D-HoVA	IF	
No.	Atomic type	1	2	3	4	5	6	7	8	9	10
1	Н	1-1	1-2	1-3	1-4	1-5	1-6	1-7	1-8	1-9	1-10
2	C(sp3)		2-2	2-3	2-4	2-5	2-6	2-7	2-8	2-9	2-10
3	C(sp2)			3-3	3-4	3-5	3-6	3-7	3-8	3-9	3-10
4	C(sp)				4-4	4-5	4-6	4-7	4-8	4-9	4-10
5	N(sp3), P(sp3)					5-5	5-6	5-7	5-8	5-9	5-10

6	N(sp2), P(sp2)	6-6	6-7	6-8	6-9	6-10
7	N(sp), P(sp)		7-7	7-8	7-9	7-10
8	O(sp3),S(sp3)			8-8	8-9	8-10
9	O(sp2), S(sp2)				9-9	9-10
10	F, Cl, Br, I					10-10

NO	Compound	NO	Compound	NO	Compound	NO	Compound
1		2		3		4	
5		6		7		8	
9		10		11		12	
13		14	ст, сс,	15		16	
17	C HIVO N N N	18		19		20	\$\$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
21		22		23		24	
25	G BY BY CO CO CO CO CO CO CO CO CO CO CO CO CO	26	CF3 INN INN OCCO	27		28	
29		30		31		32	
33	CHIQ XX	34		35		36	
37		38		39		40	

Table S3. Molecular Structures of Designed Analogs

Table S4. ADMET Properties Prediction of Designed Analogs

Compoun	Absorptio	Solubility	BBB	CYD2D6	Hepatotoxici	PPB	AlogP9	PSA_2
d	n				ty		8	D
N3		3(good)	3(low	1(inhibito	1(toxic)	0(<90%	1.65	78.95
	0(good))	r))		
N12	0	1(possibl	3	1	1	0	2.94	79.49
		e)						
N13	0	2(low)	2	1	1	0	2.38	74.84
N15	0	1	2	1	1	0	2.22	76.70
N16	0	1	3	1	1	1(>90%	2.78	79.33
)		
N17	0	2	2	1	1	1	2.07	88.78
N18	0	2	3	1	1	0	1.71	79.33
N22	0	3	3	1	1	1	2.13	78.32

Table S5. Molecular Structures of Potent KDR Inhibitors with High Inhibitory Activity

					,
Compound	IC50	Compound	IC50	Compound	IC50
	(nM)		(nM)		(nM)
	4		2	HN COCH3	1

Table S6. The Primary Targets of Potent Inhibitors Identified from Reverse Screening

			Approaches		
NO	1	2	3	4	5
10	Androgen	Vascular	Beta-secretase 1	Vascular	Dihydroorotat
	receptor	endothelial		endothelial	е
		growth factor		growth factor	dehydrogenas
		receptor 2		receptor 2	е
					mitochondrial
12	Beta-secretase	Dihydroorotate	Androgen	Vascular	Cathepsin K
	1	dehydrogenase	receptor	endothelial	
		mitochondrial		growth factor	
				receptor 2	
14	Vitamin D3	Androgen	Dihydroorotate	Vascular	Beta-secretase
	receptor	receptor	dehydrogenase	endothelial	1
			mitochondrial	growth factor	
				receptor 2	
30	Cellular	Androgen	transthyretin	Cell division	GTPase HRas
	retinoic acid-	receptor		protein kinase 2	
	binding				

	protein 2				
47	Androgen receptor	Beta-secretase 1	Neprilysin	Dihydroorotate dehydrogenase mitochondrial	Vascular endothelial growth factor receptor 2
64	Vascular endothelial growth factor receptor 2	Beta-secretase 1	Hepatocyte growth factor receptor	Basic fibroblast growth factor receptor 1	GTPase HRas
N3	Vascular endothelial growth factor receptor 2	Proto-oncogene tyrosine-protein kinase LCK	Beta-secretase 1	Mitogen- activated protein kinase 14	Dihydroorotat e dehydrogenas e mitochondrial
N1	Androgen	Mitogen-	Vascular	Dihydroorotate	Cell division
2	receptor	activated protein kinase 14	endothelial growth factor receptor 2	dehydrogenase mitochondrial	protein kinase 2
N1	Vascular	Beta-secretase 1	Mitogen-	Cell division	Proto-
3	endothelial growth factor receptor 2		activated protein kinase 14	protein kinase 2	oncogene tyrosine- protein kinase LCK
N1	Methionine	Proto-oncogene	Vascular	Mitogen-	Beta-secretase
5	aminopeptidas e 2	tyrosine-protein kinase LCK	endothelial growth factor receptor 2	activated protein kinase 14	1
N1	Beta-secretase	Vascular	Proto-oncogene	Mitogen-	Methionine
6	1	endothelial growth factor receptor 2	tyrosine-protein kinase LCK	activated protein kinase 14	aminopeptidas e 2
N1	Vascular	Dihydroorotate	Methionine	Beta-secretase 1	Cellular
7	endothelial growth factor receptor 2	dehydrogenase mitochondrial	aminopeptidase 2		retinoic acid- binding protein 2
N1	Androgen	Sex hormone-	Cellular retinoic	Peptidyl-prolyl	Aldose
8	receptor	binding globulin	acid-binding protein 2	cis-trans isomerase FKBP1A	reductase
N2	Androgen	Cellular retinoic	Cell division	Aldo-keto	GTPase HRas
2	receptor	acid-binding	protein kinase 2	reductase family	

Fig S1. Binding conformations of compound 10 from MD simulated(purple) and the cocrystallized compound 10(cyan) at the active sites of KDR.

Fig S2. The average structures from 0 to 75ns(magenta, a) , 75 to 85 ns(cyan, b), 85 to 88 ns(purple, c) and 88 to 100 ns(pink, d) MD trajectories of compound 10. (e) Superimposition of the four average structures.

Fig S3. The residue interaction spectrum for potent KDR inhibitors.