Tandem Approach for the Synthesis of 3-Sulfenylimidazo[1,5-*a*]pyridines from Dithioesters

Ajjahalli. B. Ramesha,^a Chottanahalli. S. Pavan Kumar,^a Nagarakere. C. Sandhya,^a Manikyanahalli. N. Kumara,^b Kempegowda Mantelingu^{a*} and Kanchugarakoppal. S. Rangappa,^{a*}

Synthetic Laboratory, DOS in Chemistry, University of Mysore, Manasagangotri, Mysore-570006, Karnataka, India Department of Chemistry, Yuvaraja's College, University of Mysore, Mysore 570005, Karnataka, India

Table of contents

1.	General information and procedures	2
2.	ORTEP of Compound 4h	3
3.	Tables	4-5
4.	Characterization for compounds 4a-4n and 5a-5h	6-12
5.	H ¹ NMR and C ¹³ NMR images for the compounds	
	4a-4n and 5a-5h	13-60

General Information: 2-methylaminopyridine, 2-hydrazinylpyridine, sulfonyl hydrazides and iodine were purchased from commercial sources and used as received. Reagent grade THF was purchased from Sigma-Aldrich and distilled over sodium. Purification of reaction products was carried out by flash column chromatography using Sorbent Technologies Standard Grade silica gel (60 Å, 230–400 mesh). Analytical thin layer chromatography was performed on EM Reagent 0.25 mm silica gel 60 F254 plates. Visualization was accomplished with UV light, potassium permanganate and DragendorffMunier stains followed by heating. Melting points were recorded on a Thomas Hoover capillary melting point apparatus and are uncorrected. Proton nuclear magnetic resonance spectra (¹HNMR) were recorded on Agilent-400 MHz and are reported in ppm using chloroform as the internal standard (7.24 ppm). Data are reported as app = apparent, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, comp = complex, br = broad; and coupling constant(s) in Hz. Proton-decoupled carbon nuclear magnetic resonance spectra (13C-NMR) were recorded on a Agilent-400 MHz, Bruker-400 MHz and are reported in ppm using chloroform as the internal standard (77.0 ppm). Mass spectra were recorded on Agilent mass spectrum

General Procedure for the oxidative desulfurative cyclization of dithioesters :

To a solution of dithioester (1.0 eq, 1.0 mmol) in ethanol (5 mL) was added amine or hydrazine (1.1 eq, 1.1 mmol) at room temperature, the resulting mixture was stirred for 45 min. monitored the dithioester could no longer be detected. To the above mixture was added I₂ (2.2 equiv, 2.2 mmol). The mixture was stirred at room temperature for 2h and progress was monitored by TLC. The reaction mixture was heated to 80 °C for 12-24 hrs. Once the reaction was completed, the reaction mixture was cooled to room temperature and ethanol was removed using rotary evaporator. The reaction mixture was quenched with 10 mL of water and; the aqueous layer was extracted with EtOAc (15 mL X 3). The combined organic layers were washed with water, dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure; the residue was purified by silica gel chromatography.

General Procedure for the oxidative desulfurative cyclization of dithioesters : To a solution of dithioester (1.0 eq, 1.0 mmol) in THF (2 mL) was added amine or hydrazine (1.1 eq, 1.1 mmol) at room temperature, the resulting mixture was stirred for 45 min. monitored the dithioester could no longer be detected. To the above mixture was added I_2 (2.0 equiv. The mixture was stirred at room temperature for 1.5 h and progress was monitored by TLC. The reaction mixture was diluted with EtOAc neutralized with saturated sodium bicarbonate solution, separated organic layer; the aqueous layer was extracted with EtOAc (25 mL X 3). The combined organic layers were washed with water, dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure; the residue was purified by silica gel chromatography.

ORTEP of 4h

Ortep of Compound - 4h

Empirical formula	$C_{19} H_{13} N_3 O_2 S$
Formula weight	347.38
Temperature	296(2) K
Wavelength	1.54178 ~
Reflns. for cell determination	2729
θ range for above	4.65° to 64.53°
Crystal system	Monoclinic
Space group	P 21/c
Cell dimensions	
a = 9.6224(12) Å	b = 14.7044(19) Å $c = 11.8502(16)$
$\alpha = 90.00^{\circ}$	$\beta = 98.565(4)^{\circ}$ $\gamma = 90.00^{\circ}$
Volume	1658.0(4) Å ³
Z	4
Density(calculated)	$1.392 \mathrm{Mg}\mathrm{m}^{-3}$
Absorption coefficient	$1.885 \mathrm{mm}^{-1}$
F ₀₀₀	720
Crystal size	$0.27 \times 0.25 \times 0.22$ mm
θ range for data collection	4.65° to 64.53°
Index ranges	$-11 \le h \le 11$
	$-16 \le k \le 17$
	$-13 \le l \le 13$
Reflections collected	16278
Independent reflections	2729 [$R_{int} = 0.0399$]
Absorption correction	multi-scan
Refinement method	Full matrix least-squares on F^2
Data / restraints / parameter	rs 2729 / 0 / 226
Goodness-of-fit on F ²	1.052
Final $[I > 2\sigma(I)]$	R1 = 0.0355, wR2 = 0.0938
R indices (all data)	R1 = 0.0368, wR2 = 0.0949
Largest diff. peak and hole	0.210 and $-0.212 \text{ e} \text{\AA}^{-3}$

Table 1: Crystal data and structure refinement details.

Table 2: Bond lengths (Å).

Atoms	Length	Atoms	Length
N1-C9	1.324(2)	C11-C12	1.390(3)
N1-C2	1.364(2)	C12-C13	1.362(4)
C2-C3	1.388(2)	C13-C14	1.378(4)
C2-S16	1.7412(15)	C14-C15	1.377(3)
C3-N8	1.3969(19)	S16-C17	1.7715(16)
C3-C4	1.409(2)	C17-C18	1.385(2)
C4-C5	1.360(2)	C17-C22	1.398(2)
C5-C6	1.418(3)	C18-C19	1.384(3)
C6-C7	1.341(2)	C19-C20	1.382(3)
C7-N8	1.3851(19)	C20-C21	1.377(2)
N8-C9	1.380(2)	C21-C22	1.379(2)
C9-C10	1.466(2)	C21-N23	1.473(2)
C10-C11	1.391(3)	N23-O25	1.211(2)
C10-C15	1.395(3)	N23-O24	1.220(2)

Table 3: Bond angles (°).

Atoms	Angle	Atoms	Angle
C9-N1-C2	106.75(12)	C12-C11-C10	120.08(19)
N1-C2-C3	110.66(12)	C13-C12-C11	120.4(2)
N1-C2-S16	122.71(11)	C12-C13-C14	120.1(2)
C3-C2-S16	126.42(12)	C15-C14-C13	120.4(2)
C2-C3-N8	104.66(12)	C14-C15-C10	120.2(2)
C2-C3-C4	136.07(14)	C2-S16-C17	103.58(7)
N8-C3-C4	119.26(13)	C18-C17-C22	119.38(15)
C5-C4-C3	119.17(15)	C18-C17-S16	123.72(12)
C4-C5-C6	120.25(15)	C22-C17-S16	116.90(12)
C7-C6-C5	120.94(15)	C19-C18-C17	120.46(15)
C6-C7-N8	119.61(15)	C20-C19-C18	121.07(16)
C9-N8-C7	132.00(13)	C21-C20-C19	117.41(16)
C9-N8-C3	107.21(12)	C20-C21-C22	123.39(15)
C7-N8-C3	120.68(13)	C20-C21-N23	118.90(15)
N1-C9-N8	110.70(13)	C22-C21-N23	117.69(15)
N1-C9-C10	123.62(14)	C21-C22-C17	118.27(14)
N8-C9-C10	125.67(13)	O25-N23-O24	123.22(15)
C11-C10-C15	118.76(16)	O25-N23-C21	118.59(15)
C11-C10-C9	123.33(16)	O24-N23-C21	118.19(16)
C15-C10-C9	117.82(16)		

Experimental section: Characterization for compounds 4a-3q and 5a-5e

3-phenyl-1-(p-tolylthio)imidazo[1,5-a]pyridine (4a):

Pale yellow solid (160mg, 80%); M.p. 85–87 °C; ¹H NMR (400 MHz DMSO-d₆): δ 8.49 (s, 1H0, 7.85 (s, 2H), 7.59-7.53 (m, 3H), 7.47 (s, 1H), 7.06-7.0 (m, 5H), 6.81 (d, J = 5.6 Hz, 1H), 2.16 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 139.0, 135.4, 134.7, 129.6, 129.5, 128.99, 128.93,

128.2, 127.8, 121.9, 120.7, 118.5, 113.7, 20.8; HRMS (ESI-MS) m/z: Calcd for $C_{14}H_{12}N_2$ [M + H]⁺ 317.1034 found: 317.1049.

3-(3-methoxyphenyl)-1-(p-tolylthio)imidazo[1,5-a]pyridine (4b):

Brown solid (136mg, 82%); mp.122–124 °C; ¹H NMR (400 MHz DMSO-d₆): δ 8.53 (br s, 1H), 7.59(br s, 1H), 7.47-7.38 (m, 3H), 7.04 (br s, 6H), 6.82 (d, J = 5.2 Hz, 1H), 3.83 (s, 3H), 2.18 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 160.1, 138.9, 135.4, 134.8, 134.5, 130.8, 129.9, 129.5, 127.7, 122.1, 120.8, 120.1, 118.4, 115.2, 113.7,

113.6, 55.4, 20.8; HRMS (ESI-MS) m/z: Calcd for $C_{14}H_{12}N_2O [M + H]^+$ 347.1140 found: 347.1129.

1-((4-methoxyphenyl)thio)-3-phenylimidazo[1,5-a]pyridine (4c):

Oily compound (168mg, 84%); ¹H NMR (400 MHz DMSO-d₆): δ 8.48 (d, J = 6.4 Hz, 1H), 7.85 (d, J = 6.8 Hz, 2H), 7.64 (t, J = 5.2Hz, 1H), 7.54 (d, J = 7.2 Hz, 2H), 7.47 (t, J = 6.4 Hz, 1H), 7.24-7.22 (m, 2H), 7.01-6.96 (m, 1H), 6.85-6.78 (m, 3H), 3.66 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 158.5, 138.7, 134.6, 130.2,

129.7, 129.5, 129.4, 128.3, 123.3, 122.4, 120.8, 117.8, 115.2, 114.7, 113.1, 55.6 ppm. HRMS (ESI-MS) m/z: Calcd for C₁₄H₁₁FN₂ [M + H]⁺ 333.0983 found: 333.0912.

3-(4-fluorophenyl)-1-((4-methoxyphenyl)thio)imidazo[1,5-a]pyridine (4d):

Pale yellow solid (172mg, 86%); mp. 105–107 °C; ¹H NMR (400MHz DMSO-d₆): δ 8.44 (s, 1H), 7.89 (d, J = 5.2 Hz, 2H), 7.63 (d, J = 6.4 Hz, 1H), 7.37 (d, J = 6.4 Hz, 2H), 7.21 (d, J = 4.4 Hz, 2H), 7.98 (t, J = 6 Hz, 1H), 6.82 (d, J = 6.4 Hz, 3H), 3.66 (s, 3H); ¹³C NMR (100 MHz, 1H), 6.82 (d, J = 6.4 Hz, 3H), 3.66 (s, 3H); ¹³C NMR (100 MHz, 1H), 6.82 (d, J = 6.4 Hz, 3H), 3.66 (s, 3H); ¹³C NMR (100 MHz, 1H), 6.82 (d, J = 6.4 Hz, 3H), 3.66 (s, 3H); ¹³C NMR (100 MHz, 1H), 6.82 (d, J = 6.4 Hz, 3H), 3.66 (s, 3H); ¹³C NMR (100 MHz, 1H), 6.82 (d, J = 6.4 Hz, 3H), 3.66 (s, 3H); ¹³C NMR (100 MHz, 1H), 6.82 (d, J = 6.4 Hz, 3H), 3.66 (s, 3H); ¹³C NMR (100 MHz, 1H), 6.82 (d, J = 6.4 Hz, 3H), 3.66 (s, 3H); ¹³C NMR (100 MHz, 1H), 6.82 (d, J = 6.4 Hz, 3H), 3.66 (s, 3H); ¹³C NMR (100 MHz, 1H), 6.82 (d, J = 6.4 Hz, 3H), 3.66 (s, 3H); ¹³C NMR (100 MHz, 1H), 6.82 (d, J = 6.4 Hz, 3H), 3.66 (s, 3H); ¹³C NMR (100 MHz, 1H), 6.82 (d, J = 6.4 Hz, 3H), 6.82 (d, J = 6.4 Hz, 3H), 3.66 (s, 3H); ¹³C NMR (100 MHz, 1H), 6.82 (d, J = 6.4 Hz, 3H), 3.66 (s, 3H); ¹³C NMR (100 MHz, 1H), 3.66 (s, 3H); ¹³C NMR (100 MHz, 1H), 3.66 (s, 3H); ¹³C NMR (100 MHz, 1H), 3.66 (s, 3H); ¹³C NMR (100 MHz), 3.66 (s, 3.66

DMSO-d₆) δ 163.9, 161.5, 158.5, 137.9, 134.5, 130.79, 130.70, 130.2, 128.3, 127.5, 126.3, 126.2, 123.2, 120.7, 117.8, 116.6, 116.3, 115.2, 114.7, 113.1, 55.6 ppm. HRMS (ESI-MS) m/z: Calcd for $C_{13}H_9ClN_2$ [M + H]⁺ 351.0889 found: 351.0881.

3-((4-methoxyphenyl)thio)-1-phenylimidazo[1,5-a]quinoline (4e):

Pale brown solid (160mg, 80%); mp. 106-108 °C; ¹H NMR (400 MHz DMSO-d₆): δ 7.87 (br s, 1H), 7.6 (s, 2H), 7.59 (d, J = 15.2 Hz, 4H), 7.42-7.34 (m, 4H), 7.26 (t, J = 4.4 Hz, 2H), 6.88-6.86 (m, 2H), 3.69 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 158.6, 142.7, 133.4, 133.3, 132.1,

130.5, 130.2, 130.0, 129.6, 129.3, 128.5, 127.7, 126.2, 125.5, 124.2, 123.4, 117.0, 116.3, 115.3, 55.6 ppm. HRMS (ESI-MS) m/z: Calcd for $C_{11}H_8N_2S [M + H]^+$ 383.1140 found: 383.1139.

1-phenyl-3-(p-tolylthio)imidazo[1,5-a]quinoline (4f):

Pale green solid(138mg, 85%). mp. 90-92 °C; ¹H NMR (400MHz DMSO-d₆): δ 7.88 (br s, 1H), 7.68-7.61 (m, 5H), 7.54 (d, J = 6.8 Hz, 1H), 7.41 (d, J = 11.6 Hz, 3H), 7.35 (s, 1H), 7.10 (d, J = 10.4 Hz, 2.22 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 142.9, 135.7, 134.2, 133.8, 133.4,

132.2, 130.9, 130.2, 130.0, 129.7, 129.4, 128.6, 128.3, 127.7, 126.3, 125.5, 124.4, 122.1, 117.0, 116.2, 20.9 ppm. HRMS (ESI-MS) m/z: Calcd for $C_{14}H_{12}N_2$ [M + H]⁺ 367.1191 found: 367.1199.

1-((3,4-difluorophenyl)thio)-3-phenylimidazo[1,5-a]pyridine (4g):

Pale yellow solid (164mg, 82%); mp. 101-103 °C; ¹H NMR (400 MHz DMSO-d₆): δ 8.54 (s, 1H), 7.87 (s, 2H), 7.63-7.50 (m, 4H), 7.30 (d, J = Hz, 1H), 7.19 (br s, 1H0, 7.06 (br s, 1H0, 6.95 (br s, 1H), 6.86 (d, J = 4.4Hz, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ 151.7, 151.5, 150.0, 149.8, 149.2, 149.0, 147.5, 147.4, 139.6, 135.1, 134.8, 129.3, 129.2, 129.0, 128.2, 123.17, 123.12, 123.0, 122.1, 121.5, 119.3, 118.0, 117.5, 117.3, 116.3, 116.1, 113.9; HRMS (ESI-MS): m/z $[M+H]^+$ Calcd for C₁₃H₁₀N₂: 339.0689 found: 339.0631.

1-((3-nitrophenyl)thio)-3-phenylimidazo[1,5-a]pyridine (4h):

Yellow solid (178mg, 89%); mp. 132-134 °C; ¹H NMR (400 MHz DMSO d_6): δ 8.52 (d, J = 6 Hz, 1H), 7.88 (t, J = 7.2 Hz, 4H), 7.61-7.47 (m, 6H), 7.03 (t, J = 7.6 Hz, 1H), 6.85 (d, J = 6.4Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆): δ 148.6, 141.5, 139.8, 135.7, 132.6, 130.9, 129.7, 129.5, 129.4, 128.4, 123.6, 123.5, 120.8, 120.4, 117.4, 116.5, 115.0 ppm. HRMS (ESI-MS) m/z: Calcd for C₁₂H₈FN₃ [M + H]⁺ 348.0728 found: 348.0773.

3-(4-methoxyphenyl)-1-((3-nitrophenyl)thio)imidazo[1,5-a]pyridine (4i):

Yellow solid (162mg, 81%); mp. 102–104 °C; ¹H NMR (400 MHz DMSO-d₆): δ 8.62 (s, 1H),

7.98-7.94 (m, 2H), 7.68 (t, J = 5.2 Hz, 1H), 7.56-7.51 (m, 3H), 7.46 (s, 1H), 7.42 (s, 1H), 7.11 (br s, 2H), 6.92 (d, J = 5.6 Hz, 1H), 3.86 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 160.1, 148.6, 141.6, 139.9, 135.5, 132.1, 130.4, 130.0, 129.3, 122.4, 121.9, 121.1, 120.2, 120.1, 117.8,

115.5, 114.0, 113.7, 55.4; HRMS (ESI-MS) m/z: Calcd for $C_{17}H_{12}N_2$ [M + H]⁺ 378.0834 found: 378.0862.

3-(3-methoxyphenyl)-1-((4-(trifluoromethyl)phenyl)thio)imidazo[1,5-a]pyridine (4j)

Pale yellow solid (140mg, 78%); mp. 90–92 °C; ¹H NMR (400M Hz DMSO-d₆): δ 8.60 (d, J = 6 Hz, 1H), 7.60 (d, J = 9.2 Hz, 1H), 7.55 (d, J = 8.4 Hz, 2H), 7.47 (d, J = 10 Hz, 2H), 7.41 ((s, 1H), 7.26 (d, J°CF₃ = 6.8 Hz, 2H), 7.07 (d, J = 7.2 Hz, 2H), 6.89 (d, J = 6Hz, 1H), 3.84

(s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 164.8, 162.8, 160.1, 149.2, 148.8, 144.7, 139.5, 139.0, 135.8, 135.1, 130.8, 130.6, 128.7, 128.5, 126.36, 126.30, 126.2, 126.1, 123.8, 123.3, 123.2, 120.6, 120.1, 119.3, 117.4, 116.5, 115.6, 114.9, 113.6, 55.7 ppm. HRMS (ESI-MS): m/z [M+H]⁺ Calcd for C₁₅H₁₄N₂: 401.0908 found: 401.0919.

3-phenyl-1-((4-(trifluoromethyl)phenyl)thio)imidazo[1,5-a]pyridine (4k):

Oily compound (152mg, 76%); ¹H NMR (400 MHz DMSO-d₆): δ 8.60 (d, J =8 Hz, 1H), 7.89 (d, J = 3.2 Hz, 2H), 7.60-7.54 (m, 5H), 7.53 (br s, 1H) 7.27 (d, J = 7.6 Hz, 2H), 7.09 (d, J = 8.4 Hz, 1H), 6.92 (d, J = 3.6 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆): δ 144.8, 139.7, 135.7, 129.64, 129.60, 128.5, 126.39, 126.32, 126.1, 126.0, 123.7,

123.4, 117.4, 116.5, 114.9; HRMS (ESI-MS) m/z: Calcd for $C_{19}H_{17}FN_2S$ [M + H]⁺ 371.0752 found: 371.0767.

1-phenyl-3-((4-(trifluoromethyl)phenyl)thio)imidazo[1,5-a]quinoline (4l):

Oily Compound (176mg, 84%); ¹H NMR (400 MHz DMSO-d₆): δ 7.93 (br s, 1H), 7.22 (s, 2H),

6.22 (t, J = 8 Hz, 5H), 7.55 (d, J = 8 Hz, 1H), 7.49 (d, J = 5.2 Hz, 2H), 7.40 (d, J = 6.4, 2H), 7.33 (d, J = 6.4 Hz, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ 144.3, 143.6, 134.6, 133.4, 132.2, 130.4, 130.1, 129.8, 129.4, 128.8, 126.6, 126.4, 126.37, 123.33, 125.5, 125.1, 119.2, 117.0, 115.9 ppm.

HRMS (ESI-MS) m/z: Calcd for $C_{17}H_{11}FN_2$ [M + H]⁺ 421.0908 found: 421.0967.

1-(cyclopropylthio)-3-phenylimidazo[1,5-a]pyridine (4m)

Oily compound (152mg, 72%); ¹H NMR (400 MHz DMSO-d₆): δ 8.24 (d, J = 7.6 Hz, 1H), 7.81 (d, J = 6.8 Hz, 2H), 7.64 (d, J = 9.2 Hz, 1H), 7.51 (t, J = 8.2 Hz, 2H), 7.43 (t, J = 7.6 Hz, 1H), 6.83-6.79 (m, 1H), 6.60 (t, J = 6.4 Hz, 1H), 2.36-2.30 (m, 1H), 0.83-0.78 (m, 2H), 0.77-0.73 (m, 2H); ¹³C

NMR (100 MHz, DMSO-d₆): δ 138.4, 133.8, 129.8, 128.9, 128.8, 128.1, 123.9, 121.7, 120.0, 118.6, 113.4, 29.6, 16.7, 8.4 HRMS (ESI-MS) m/z: Calcd for C₁₉H₁₇FN₂S [M + H]⁺ 267.0878 found: 267.0866.

1-(phenethylthio)-3-phenylimidazo[1,5-a]pyridine(4n)

Oily compound (152mg, 76%); ¹H NMR (400 MHz DMSO-d₆): δ 8.23 (d, *J* = 7.6 Hz, 1H), 7.81 (d, J = 7.2 Hz, 2H), 7.60 (d, *J* = 8.8 Hz, 1H), 7.52 (t, *J* = 7.6 Hz, 2H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.22 (t, *J* = 3.6 Hz, 2H), 7.17 (t, *J* = 6.8 Hz, 3H), 6.81-6.78 (m, 1H), 6.60 (t, *J* = 6.8 Hz,

1H), 3.18-3.12 (m, 2H), 2.93 (t, J = 7.2 Hz, 2H); ¹³C NMR (100 MHz, DMSO-d₆): δ 148.2, 138.0, 137.5, 133.7, 130.5, 130.4, 130.1, 130.0, 127.7, 125.9, 123.9, 123.3, 121.4, 120.0, 118.6, 116.1, 115.9, 113.6, 38.2, 35.8; HRMS (ESI-MS) m/z: Calcd for C₁₉H₁₇FN₂S [M + H]⁺ 331.1191 found: 331.1186.

3-phenylimidazo[1,5-*a*]pyridine (5a):

Pale yellow solid (164mg, 82%); mp. 101–103 °C; ¹H NMR (400 MHz DMSO-d₆): δ 6.70–6.66 (m, 1H), 6.82–6.79 (m, 1H), 7.45 (t, J = 7.2 Hz,1H), 7.54–7.50 (m, 3H), 7.62 (d, J = 8.8 Hz, 1H), 7.81–7.79 (m, 2H), 8.42 (d, J = 6.8 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆): δ 137.7, 131.8, 130.6, 128.5, 128.1, 127.8, 122.4, 122.1, 121.4, 119.1, 118.9, 113.9, 113.8; HRMS (ESI-MS): m/z [M+H]⁺ Calcd for C₁₃H₁₀N₂: 195.2319 found: 195.2321.

(3g):8-methyl-3-(p-tolyl)imidazo[1,5-*a*]pyridine (5b):

Pale yellow solid (140mg, 70%); mp. 90–92 °C; ¹H NMR (400M Hz DMSO-d₆): δ
2.30 (s, 3H), 2.32 (s, 3H), 6.38–6.37 (m, 2H), 7.21 (d, J = 7.6 Hz, 2H), 7.41 (d, J = 0.8 Hz, 1H), 7.57 (d, J = 7.6 Hz, 2H), 8.00–7.98 (m, 1H); ¹³C NMR (100 MHz, DMSO-d₆): δ 138.7, 138.6, 132.6, 129.7, 129.5, 128.6, 128.0, 127.8, 127.4, 119.3, 119.2, 118.9, 118.7, 117.7, 117.6, 117.5, 113.3, 113.2, 113.1, 21.4, 17.8; HRMS

(ESI-MS): $m/z [M+H]^+$ Calcd for $C_{15}H_{14}N_2$: 222.2851 found: 222.2864.

3-(4-Fluorophenyl)-8-methylimidazo[1,5-*a***]pyridine (5c):**

Oily compound (168mg, 84%); ¹H NMR (400 MHz DMSO-d₆): δ 2.37 (s, 3H),
6.61–6.60 (m, 2H), 7.36–7.31 (m, 2H), 7.51 (s, 1H), 7.84–7.80 (m, 2H), 7.51 (s, 1H), 7.84–7.80 (m, 2H), 8.23–8.21 (m, 1H); ¹³C NMR (100 MHz, DMSO-d₆): δ
164.2, 161.8, 141.0, 132.3, 132.2, 132.0, 130.63, 130.60, 129.4, 128.1, 125.8, 125.6, 122.7, 122.6, 121.8, 117.6, 116.8, 116.4, 116.2; HRMS (ESI-MS) m/z:
H. FN, IM + 101 227 2480 four d. 227 2488

Calcd for $C_{14}H_{11}FN_2 [M + H]^+$ 227.2489 found: 227.2488.

1-(4-fiurophenyl)imidazo[1,5-*a*]quinoline (5d):

Oily Compound (176mg, 88%); ¹H NMR (400 MHz DMSO-d₆): δ 7.19 (d, J = 9.6 Hz, 1H), 7.41 (m, 5H), 7.50 (d, J = 9.6 Hz, 1H), 7.53 (s, 1H), 7.66–7.62 (m, 2H), 7.78 (d, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆): δ 164.0, 161.6, 146.9, 143.7, 143.6, 143.5, 138.0, 130.7, 130.6, 130.5, 129.4, 127.6, 126.6, 126.0, 125.6, 116.6, 116.4; HRMS (ESI-MS) m/z: Calcd for C₁₇H₁₁FN₂ [M + H]⁺ 263.2810

found: 263.2818.

3-(thiophen-3-yl)imidazo[1,5-*a*]pyridine (5e):

Pale brown solid (160mg, 80%); mp. 106–108 °C; ¹H NMR (400 MHz DMSOd₆): δ 6.82–6.74 (m, 2H), 7.19–7.17 (m, 1H), 7.50 (s, 1H), 7.66– 7.58 (m, 3H), 8.49 (d, J = 6.4 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆): δ 133.1, 132.7, 131.9, 128.5, 126.7, 126.6, 124.28, 124.23, 122.6, 121.08, 121.03, 119.6, 118.9, 114.5; HRMS (ESI-MS) m/z: Calcd for C₁₁H₈N₂S [M + H]⁺ 201.2596 found: 201.2593.

3-(tert-butyl)imidazo[1,5-*a*]pyridine (5f):

Oily Compound; yield: 138mg (69%); ¹H NMR (400 MHz DMSO-d₆): δ = 1.45 (s, 9H), 6.58 (t, *J* = 6.8 Hz, 1H), 6.70–6.65 (m, 1H), 7.22 (s, 1H), 7.50 (d, *J* = 9.6 Hz, 1H), 8.34 (d, *J* = 7.6 Hz, 1H), ¹³C NMR (100 MHz, DMSO-d₆): δ = 27.4, 28.2, 112.0, 117.83, 117.89, 118.9, 123.8, 131.6, 145.0; HRMS (ESI-MS) m/z: Calcd for C₁₁H₁₄N₂ [M + H]⁺ 174.2423 found: 174.2427.

3-(p-tolyl)-[1,2,4]triazolo[4,3-*a*]pyridine (5g):

Pale yellow solid; yield: 170mg (85%); MP 118–120 °C; ¹H NMR (400 MHz DMSO-d₆): δ 8.19 (t, *J* = 6.8 Hz, 1H), 7.70 (t, *J* = 9.2 Hz, 1H), 7.64-7.60 (m, 2H), 7.30 (d, *J* = 7.6 Hz, 2H), 7.20-7.18 (m, 1H), 6.78 (t, *J* = 6.4 Hz, 1H), 2.37 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 150.3, 146.7, 140.3, 129.9, 28.0, 126.6, 122.6, 116.6, 116.5, 114.0, 21.4; HRMS (ESI-MS) m/z: Calcd for C₁₃H₁₁N₃ [M + H]⁺

209.2465 found: 209.2462.

3-(4-methoxyphenyl)-[1,2,4]triazolo[4,3-*a*]pyridine (5h):

Pale yellow solid; yield: 168mg (84%); MP 121–123 °C; ¹H NMR (400 MHz DMSO-d₆): δ 8.20 (d, *J* = 6.8 Hz, 1H), 7.77-7.71 (m, 3H), 7.22 (t, *J* = 7.2 Hz, 1H), 7.06 (d, *J* = 8 Hz, 2H), 6.81 (t, *J* = 6.4 Hz, 1H), 3.86 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 161.0, 129.7, 126.6, 122.5, 118.9, 116.7, 113.9, 55.4; HRMS (ESI-MS) m/z: Calcd for C₁₃H₁₁N₃O [M + H]⁺ 225.2459 found: 225.2458.

3-(2-methoxyphenyl)imidazo[1,5-a]pyridine (5i):

Pale brown solid (143mg, 76%); mp. 119–121 °C; ¹H NMR (400 MHz DMSO-d₆): 7.61-7.56 (m, 3H), 7,47-7,42 (m, 2H), 7.09 (t, J = 7.2 Hz, 1H), 7.03 (d, J = 8.8 Hz, 1H), 6.73-6.69 (m, 1H), 6.49 (t, J = 6.8 Hz, 1H), 3.79 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 157.3, 136.1, 132.4, 131.2, 130.5, 123.0, 121.1, 120.0, 119.4, 118.4, 118.1, 111.7, 111.2, 55.5; HRMS (ESI-MS) m/z: Calcd for $C_{14}H_{12}N_2O [M + H]^+$ 225.2579 found: 225.2566.

3-(napthalen-1-yl)imidazo[1,5-*a*]pyridine (5j):

Pale brown solid (154mg, 73%); mp. 104-106°C; ¹H NMR (400 MHz DMSOd₆): δ 7.98-7.91 (m, 2H), 7.73-7.71 (m, 2H), 7.66-7.64 (m. 2H), 7.60-7.53 (m, 1H), 7.51-7.49 (m, 2H), 7.46-7.42 (m, 2H), 6.74-6.70 (m, 1H), 6.54-6.41 (m, 1H); ¹³C NMR (100 MHz, DMSO-d₆): δ 136.9, 133.9, 131.9, 131.0, 129.7, 128.5, 127.4, 126.9, 125.5, 125.3, 121.7, 120.2, 118.8, 118.5, 112.5; HRMS (ESI-MS) m/z:

Calcd for $C_{17}H_{12}N_2 [M + H]^+$ 225.2906 found: 225.2911.

¹H NMR of **4a**

¹H NMR of **4b**

Me

¹H NMR of **4c**

1H NMR of **4d**

¹³C Spectra of **3e**

Me

¹³C Spectra of **4g**

¹H NMR of **4h**

¹³C Spectra of **4i**

¹H NMR of **4j**

CF₃

¹H NMR of **4I**

¹H NMR of **4n**

¹³C NMR of **4n**

¹³C NMR of 5a

¹³C NMR of **5b**

¹H NMR of **5c**

¹³C NMR of **5c**

¹H NMR of **5d**

¹³C NMR of **5d**

¹H NMR of **5e**

¹³C NMR of 5f

¹H NMR of **5g**

¹³C NMR of **5g**

¹³C NMR of **5h**

¹H NMR of **5i**

¹³C NMR of **5i**

¹H NMR of **5j**

¹³C NMR of 5j

