Supporting Information

Copper-Catalyzed Synthesis of Quinoline Derivatives *via* Tandem Knoevenagel Condensation, Amination and Cyclization

Shiv Dhiman, Hitesh Kumar Saini, Nitesh Kumar Nandwana, Dalip Kumar and Anil Kumar^{*} Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India

E-mail: anilkumar@pilani.bits-pilani.ac.in

Contents

Copies of ¹H and ¹³C NMR spectra of **4**, **5**, **6**, **8**, **9**, **10**, **11** and **12**

Single X-crystal data

References

Copies of ¹H and ¹³C NMR spectra of 4, 5, 6, 8, 9 & 10

S5

a.25 (a.25) (b.22) (b.22) (c.23) (c.2

≺ 4.04 ≺ 4.00

S24

LC-MS of 11

Crystal Structure Report for 10 (CCDC 1433055)

Identification code	vbchem114		
Chemical formula	CHBrNO		
Formula weight	122.94 g/mol		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal system	triclinic		
Space group	P -1		
Unit cell dimensions	$a = 8.9523(11) \text{ Å}$ $\alpha = 83.854(10)^{\circ}$		
	$b = 10.8955(15) \text{ Å}$ $\beta = 89.882(9)^{\circ}$		
	c = 13.2918(18) Å	$\gamma = 89.928(9)^{\circ}$	
Volume	1289.0(3) Å ³		
Ζ	16		
Density (calculated)	2.534 g/cm^3		
Absorption coefficient	12.492 mm ⁻¹		
F(000)	912		

Table 1. Sample and crystal data

Table 2. Data collection and structure refinement

Theta range for data collection	1.54 to 28.89°		
Index ranges	-12<=h<=12, -14<=k<=14, -17<=l<=17		
Reflections collected	41097		
Independent reflections	6642 [R(int) = 0.3862	2]	
Coverage of independent reflections	97.9%		
Absorption correction	multi-scan		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)		
Function minimized	$\Sigma \mathrm{w}(\mathrm{F_o}^2 - \mathrm{F_c}^2)^2$		
Data / restraints / parameters	6642 / 0 / 343		
Goodness-of-fit on F ²	1.410		
Final R indices	2552 data; I>2 σ (I) R1 = 0.1575, wR2 = 0.2795		
	all data $R1 = 0.3435, wR2 = 0.3407$		
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.1000P) ² +0.6035P] where P=(F_o^2 +2 F_c^2)/3		
Largest diff. peak and hole	1.172 and -2.442 $e^{A^{-3}}$		
R.M.S. deviation from mean	0.342 eÅ ⁻³		

Table 3. Atomic coordinates and equivalent isotropic atomic displacement parameters $({\rm \AA}^2)$

	x/a	y/b	z/c	U(eq)
Br1	0.60369(15)	0.69560(14)	0.83172(11)	0.0500(5)
Br2	0.10329(15)	0.80468(14)	0.66867(11)	0.0506(5)
01	0.9436(9)	0.6540(9)	0.9648(7)	0.054(3)
O2	0.4430(9)	0.8458(9)	0.5355(7)	0.051(3)
C26	0.8130(12)	0.9171(10)	0.5811(8)	0.023(3)
C11	0.4127(12)	0.4928(11)	0.8810(8)	0.025(3)
C24	0.6670(11)	0.9044(10)	0.5990(8)	0.022(3)
C27	0.9104(11)	0.0081(10)	0.6184(8)	0.021(3)
N2	0.5303(12)	0.0301(11)	0.7224(9)	0.053(3)
C10	0.3134(12)	0.5834(10)	0.9178(8)	0.025(3)
C28	0.0510(13)	0.9716(10)	0.6573(9)	0.027(3)
C1	0.1367(13)	0.7953(11)	0.9798(9)	0.031(3)
C6	0.2482(13)	0.8594(12)	0.9246(10)	0.037(3)
C25	0.5917(14)	0.9761(13)	0.6660(10)	0.040(3)
C7	0.0678(14)	0.6820(12)	0.9475(9)	0.034(3)
C8	0.1679(11)	0.5961(10)	0.9002(8)	0.022(3)
C12	0.5517(13)	0.5272(11)	0.8441(8)	0.027(3)
N1	0.0322(13)	0.4726(12)	0.7763(10)	0.058(4)
C16	0.3682(14)	0.3704(12)	0.8881(9)	0.038(3)
C29	0.1508(13)	0.0522(13)	0.6904(9)	0.037(3)
C9	0.0936(14)	0.5236(13)	0.8350(11)	0.042(3)
C32	0.8698(14)	0.1305(12)	0.6139(9)	0.039(3)
C18	0.7488(14)	0.6418(12)	0.5745(10)	0.039(3)
C23	0.5687(14)	0.8178(11)	0.5518(9)	0.033(3)
C31	0.9671(15)	0.2133(13)	0.6487(9)	0.040(3)
C17	0.6362(12)	0.7056(12)	0.5193(9)	0.030(3)
C15	0.4680(15)	0.2877(13)	0.8525(10)	0.044(3)
C13	0.6516(14)	0.4463(14)	0.8084(10)	0.041(3)
C30	0.1078(16)	0.1758(15)	0.6855(10)	0.053(4)
C2	0.0718(15)	0.8384(14)	0.0669(10)	0.048(4)

U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
C22	0.5754(15)	0.6607(13)	0.4332(10)	0.046(4)
C14	0.6106(16)	0.3280(15)	0.8148(9)	0.049(4)
C5	0.3053(15)	0.9665(12)	0.9598(12)	0.047(4)
C21	0.6369(18)	0.5529(14)	0.4033(11)	0.056(4)
C4	0.2500(18)	0.0126(14)	0.0420(13)	0.058(4)
C20	0.7503(18)	0.4885(14)	0.4563(12)	0.052(4)
C3	0.1345(18)	0.9483(16)	0.0979(12)	0.062(5)
C19	0.8027(16)	0.5314(13)	0.5392(12)	0.054(4)

Table 4. Bond lengths (Å).

Br1-C12	1.884(11)	Br2-C28	1.868(11)
O1-C7	1.169(13)	O2-C23	1.179(14)
C26-C24	1.333(14)	C26-C27	1.449(15)
C11-C12	1.374(15)	C11-C16	1.387(17)
C11-C10	1.451(15)	C24-C25	1.415(17)
C24-C23	1.480(16)	C27-C32	1.377(16)
C27-C28	1.403(16)	N2-C25	1.141(16)
C10-C8	1.328(15)	C28-C29	1.360(17)
C1-C6	1.382(16)	C1-C2	1.418(17)
C1-C7	1.485(17)	C6-C5	1.400(18)
C7-C8	1.482(16)	C8-C9	1.403(18)
C12-C13	1.374(17)	N1-C9	1.147(17)
C16-C15	1.386(17)	C29-C30	1.40(2)
C32-C31	1.371(17)	C18-C17	1.390(17)
C18-C19	1.420(18)	C23-C17	1.468(16)
C31-C30	1.396(19)	C17-C22	1.403(17)
C15-C14	1.423(19)	C13-C14	1.33(2)
C2-C3	1.42(2)	C22-C21	1.39(2)
C5-C4	1.34(2)	C21-C20	1.38(2)
C4-C3	1.41(2)	C20-C19	1.33(2)

	8		
C24-C26-C27	126.3(10)	C12-C11-C16	120.6(11)
C12-C11-C10	120.3(10)	C16-C11-C10	119.1(10)
C26-C24-C25	121.6(10)	C26-C24-C23	124.6(10)
C25-C24-C23	113.8(10)	C32-C27-C28	119.2(10)
C32-C27-C26	121.5(10)	C28-C27-C26	119.3(10)
C8-C10-C11	127.0(10)	C29-C28-C27	122.9(11)
C29-C28-Br2	117.8(10)	C27-C28-Br2	119.3(9)
C6-C1-C2	122.4(12)	C6-C1-C7	122.4(11)
C2-C1-C7	115.1(11)	C1-C6-C5	118.6(12)
N2-C25-C24	177.6(15)	01-C7-C8	119.6(11)
O1-C7-C1	123.2(11)	C8-C7-C1	117.0(10)
C10-C8-C9	121.4(10)	C10-C8-C7	125.2(10)
C9-C8-C7	113.4(10)	C13-C12-C11	123.4(11)
C13-C12-Br1	117.6(9)	C11-C12-Br1	118.8(9)
C15-C16-C11	116.6(12)	C28-C29-C30	117.2(12)
N1-C9-C8	174.5(16)	C31-C32-C27	119.1(13)
C17-C18-C19	117.6(12)	O2-C23-C17	123.0(11)
O2-C23-C24	118.8(11)	C17-C23-C24	118.0(10)
C32-C31-C30	121.0(13)	C18-C17-C22	121.0(12)
C18-C17-C23	121.9(11)	C22-C17-C23	117.0(11)
C16-C15-C14	120.6(13)	C14-C13-C12	116.7(12)
C29-C30-C31	120.6(12)	C1-C2-C3	115.9(13)
C21-C22-C17	117.3(13)	C13-C14-C15	122.0(12)
C4-C5-C6	122.3(13)	C20-C21-C22	122.7(13)
C5-C4-C3	119.2(13)	C19-C20-C21	118.6(14)
C4-C3-C2	121.4(13)	C20-C19-C18	122.7(14)

Table 5. Bond angles (°)

Table 6. Anisotropic atomic displacement parameters (Å²).

The anisotropic atomic displacement factor exponent takes the form: -2 π^2 [$h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

	U11	U22	U33	U23	U13	U12
Br1	0.0527(9)	0.0466(10)	0.0521(10)	-0.0116(8)	0.0168(7)	-0.0195(7)
Br2	0.0509(9)	0.0492(10)	0.0538(10)	-0.0156(8)	-0.0135(7)	0.0197(7)
01	0.022(5)	0.073(7)	0.073(7)	-0.028(6)	0.010(4)	-0.011(4)

	U11	U22	U33	U23	U13	U12
O2	0.022(5)	0.065(7)	0.070(7)	-0.026(6)	-0.009(4)	0.014(4)
C26	0.029(6)	0.017(6)	0.023(6)	-0.007(5)	-0.002(5)	0.004(5)
C11	0.028(6)	0.030(8)	0.019(6)	-0.011(5)	0.001(5)	-0.004(5)
C24	0.029(6)	0.019(7)	0.020(6)	-0.012(5)	0.002(5)	0.005(5)
C27	0.024(6)	0.022(7)	0.019(6)	-0.013(5)	0.006(4)	0.003(5)
N2	0.042(7)	0.058(9)	0.064(9)	-0.033(7)	0.015(6)	0.004(6)
C10	0.038(7)	0.017(7)	0.022(7)	-0.006(5)	0.011(5)	-0.005(5)
C28	0.045(7)	0.012(6)	0.025(7)	-0.003(5)	0.014(5)	0.006(5)
C1	0.037(7)	0.034(8)	0.024(7)	-0.016(6)	-0.006(5)	0.009(6)
C6	0.034(7)	0.029(8)	0.046(8)	0.001(7)	0.009(6)	0.001(6)
C25	0.036(7)	0.048(10)	0.036(8)	-0.005(7)	-0.006(6)	-0.014(6)
C7	0.038(8)	0.032(8)	0.035(8)	-0.017(6)	0.001(6)	-0.001(6)
C8	0.025(6)	0.018(7)	0.022(6)	-0.005(5)	-0.001(5)	-0.004(5)
C12	0.043(7)	0.018(7)	0.022(7)	-0.012(5)	0.002(5)	-0.014(5)
N1	0.044(7)	0.065(9)	0.072(9)	-0.039(8)	-0.008(6)	-0.001(6)
C16	0.061(9)	0.024(8)	0.033(8)	-0.017(6)	-0.008(6)	0.005(6)
C29	0.033(7)	0.047(10)	0.033(8)	-0.011(7)	0.000(5)	-0.008(6)
C9	0.041(8)	0.034(9)	0.053(10)	-0.016(8)	0.017(7)	0.010(6)
C32	0.060(9)	0.034(9)	0.025(7)	-0.013(6)	0.016(6)	-0.014(7)
C18	0.042(8)	0.033(8)	0.043(8)	-0.004(7)	0.003(6)	0.005(6)
C23	0.046(8)	0.025(8)	0.028(7)	-0.013(6)	0.004(6)	-0.003(6)
C31	0.050(8)	0.043(9)	0.026(7)	-0.003(7)	-0.001(6)	-0.004(7)
C17	0.031(7)	0.040(8)	0.021(7)	-0.011(6)	0.003(5)	-0.007(6)
C15	0.055(9)	0.048(10)	0.029(8)	-0.010(7)	-0.006(6)	0.009(7)
C13	0.036(7)	0.047(10)	0.043(9)	-0.023(7)	0.002(6)	0.004(6)
C30	0.059(10)	0.069(12)	0.031(8)	-0.011(8)	0.013(7)	-0.037(8)
C2	0.052(9)	0.054(10)	0.041(9)	-0.025(8)	-0.008(6)	0.015(7)
C22	0.057(9)	0.050(10)	0.034(8)	-0.023(7)	0.008(6)	-0.022(7)
C14	0.056(9)	0.066(12)	0.023(8)	-0.005(7)	-0.006(6)	0.033(8)
C5	0.059(9)	0.021(8)	0.064(11)	-0.015(7)	-0.009(7)	-0.009(6)
C21	0.078(11)	0.047(10)	0.048(10)	-0.033(8)	0.015(8)	-0.016(8)
C4	0.076(11)	0.045(11)	0.058(11)	-0.026(9)	-0.014(8)	-0.005(8)
C20	0.077(11)	0.041(10)	0.043(9)	-0.021(8)	0.002(8)	0.004(8)
C3	0.078(11)	0.062(11)	0.052(10)	-0.039(9)	-0.018(8)	0.027(9)
C19	0.067(10)	0.032(9)	0.064(11)	-0.006(8)	0.014(8)	0.006(7)

References:

- 1. Shen, J.; Yang, D.; Liu, Y.; Qin, S.; Zhang, J.; Sun, J.; Liu, C.; Liu, C.; Zhao, X.; Chu, C.; Liu, R., *Org. Lett.* **2014**, *16*, 350-353.
- 2. Wang, K.; Nguyen, K.; Huang, Y.; Dömling, A., J. Comb. Chem. **2009**, *11*, 920-927.