Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Magnetic Nanoparticle-Supported Ferrocenylphosphine: A Reusable Catalyst for Hydroformylation of Alkene and Mizoroki-Heck Olefination

M. Nasiruzzaman Shaikh,^{*,a} Md. Abdul Aziz,^a Aasif Helal,^a Mohamed Bououdina,^b Zain H. Yamani^a and Tae-Jeong Kim^c

Contents

Entry	Data	Page #
1	Synthetic route: Scheme of dop-BPPF	2
2	¹ H- NMR Spectrum of dop-BPPF	3
3	³¹ P NMR Spectrum of dop-BPPF	4
4	FAB-Mass Spectrum of dop-BPPF	5
5	TGA Curve	6
6	FTIR spectra	7
7	Table 1: for Structural, microstructural of magnetite Fe ₃ O ₄ before and after coating and complexation with Pd and Rh.	8
8	Table 2. Magnetic properties investigation data of magnetite Fe ₃ O ₄ before and after coating and complexation with Pd and Rh	8
9	XRD pattern refinement using the Rietveld method of Fe ₃ O ₄	9
10	XRD pattern refinement using the Rietveld method of Fe ₃ O ₄ @dop-BPPF	10
11	XRD pattern refinement using the Rietveld method of Fe ₃ O ₄ @dop- BPPF-Pd	11
12	XRD pattern refinement using the Rietveld method of Fe ₃ O ₄ @dop- BPPF-Rh	12
13	EDX spectra of (a) Fe₃O₄@dop-BPPF-Rh and (b) Fe₃O₄@dop-BPPF-Pd	13
14	GC and Mass spectra	14-37

Scheme 1

S1: ¹H NMR of the **dop-BPPF** in DMSO-*d*₆

S2: ³¹P NMR of the **dop-BPPF** in DMSO-*d*₆

S3: FAB-Mass spectrum of the dop-BPPF

S4: TGA of Fe₃O₄@dop-BPPF under argon atmosphere

S5: FT-IR spectrum of a) Fe₃O₄ b) **dop-BPPF** c) **Fe₃O₄@dop-BPPF** with KBr pallet

Table 1. Structural, microstructural of magnetite Fe_3O_4 before and after coating and complexation with Pd and Rh.

	Crystallite size	Microstrain	Lattice	Goodness of fit
	(nm)	(%)	parameter	
			(Å)	
Fe ₃ O ₄	8.4	0.360	8.372(4)	1.0726
Fe ₃ O ₄ @dop-BPPF	8.5	0.478	8.365(4)	1.1276
Fe3O4@dop-BPPF-Pd	8.6	0.500	8.363(4)	1.1079
Fe3O4@dop-BPPF-Rh	8.4	0.340	8.359(4)	1.1300

Table 2. Magnetic properties investigation data of magnetite Fe_3O_4 before and after coating and complexation with Pd and Rh.

	Coercivity, H_c	Remanence, $M_{\rm r}$	Saturation
	(Oe)	(emu/g)	magnetization, M_s
			(emu/g)
Fe ₃ O ₄	3.965	0.802	68.03
Fe3O4@dop-BPPF	4.322	0.645	58.75
Fe ₃ O ₄ @dop-BPPF-Rh	4.480	0708	56.00
Fe ₃ O ₄ @dop-BPPF-Pd	4.614	0.722	54.15

S6. XRD pattern refinement using the Rietveld method of Fe_3O_4

S7. XRD pattern refinement using the Rietveld method of Fe₃O₄@dop-BPPF

S8. XRD pattern refinement using the Rietveld method of Fe₃O₄@dop-BPPF-Pd

S9. XRD pattern refinement using the Rietveld method of Fe₃O₄@dop-BPPF-Rh

S10: EDX spectra of (a) Fe₃O₄@dop-BPPF-Rh and (b) Fe₃O₄@dop-BPPF-Pd

S11: GC spectra of hydroformylated product of styrene in DCM at 45 °C

S12: Mass spectra of hydroformylated branched product of styrene

S13: Mass spectra of hydroformylated linear product of styrene

S14: GC spectra of hydroformylated product of styrene in THF at 45 $^{\circ}$ C

S15: GC spectra of hydroformylated product of 4-methylstyrene in DCM at 45 °C

S16: Mass spectra of hydroformylated branched product of 4-methylstyrene

S17: Mass spectra of hydroformylated linear product of 4-methylstyrene

S18: GC spectra of hydroformylated product of 4-methylstyrene in THF at 45 °C

S19: GC spectra of hydroformylated product of 4-vinylanisole in DCM at 45 °C

S20: Mass spectra of hydroformylated branched product of 4-vinylanisole

S21: Mass spectra of hydroformylated linear product of 4-vinylanisole

S22: GC spectra of hydroformylated product of 4-chlorostyrene in DCM at 45 °C

S23: Mass spectra of hydroformylated branched product of 4-chlorostyrene

S24: Mass spectra of hydroformylated linear product of 4-chlorostyrene

S25: GC spectra of hydroformylated product of 3-nitrostyrene in DCM at 45 $^{\rm o}{\rm C}$

S26: Mass spectra of hydroformylated branched product of 3-nitrostyrene

S27: Mass spectra of hydroformylated linear product of 3-nitrostyrene

S28: GC spectra of hydroformylated product of 2-bromostyrene in DCM at 45 $^{\circ}$ C

S29: Mass spectra of hydroformylated branched product of 2-bromostyrene

S30: Mass spectra of hydroformylated linear product of 2-bromostyrene

S31: GC spectra of Mizoroki-Heck reaction product of styrene and iodobenzene at $95^{\circ}C$

S32: Mass spectra of iodobenzene at $R_t = 7.585$.

S33: Mass spectra of coupling reaction product of styrene and iodobenzene

S34: GC spectra of Mizoroki-Heck reaction product of styrene and bromobenzene at 95°C after 1 hour

S35: Mass spectra of bromobenzene at $R_t = 5.055$.

S36: GC spectra of Mizoroki-Heck reaction product of styrene and bromobenzene at 95°C after 2 hour

S37: GC spectra of Mizoroki-Heck reaction product of 4-methylstyrene and iodobenzene at $95^{\circ}C$

S38: Mass spectra of Mizoroki-Heck coupling reaction product of 4-methylstyrene

S39: GC spectra of Mizoroki-Heck reaction product of 4-methylstyrene and bromobenzene at 95°C after 30 minutes

S40: GC spectra of Mizoroki-Heck reaction product of 4-methylstyrene and bromobenzene at 95°C after 2 hours

S41: GC spectra of Mizoroki-Heck reaction product of 4-vinylanisole and iodobenzene at 95°C after 30 minutes

S42: Mass spectra of Mizoroki-Heck coupling reaction product of 4-vinylanisole

S43: GC spectra of Mizoroki-Heck reaction product of 4-vinylanisole and bromobenzene at 95°C after 1 hour

S44: GC spectra of Mizoroki-Heck reaction product of 4-chlorostyrene and iodobenzene at 95°C after 30 minutes

S45: Mass spectra of Mizoroki-Heck coupling reaction product of 4-chlorostyrene

S46: GC spectra of Mizoroki-Heck reaction product of 4-chlorostyrene and bromobenzene at 95°C after 1 hour

S47: GC spectra of Mizoroki-Heck reaction product of 3-nitrostyrene and iodobenzene at 95°C after 30 minutes

S48: Mass spectra of Mizoroki-Heck coupling reaction product of 3-nitrostyrene