New indole based co-sensitizers for dye sensitized solar cells exceeding 10% efficiency

Dickson D. Babu⁺, Rui Su[‡], Ahmed El-Shafei^{*‡} and Airody Vasudeva Adhikari ^{*†}

⁺ Organic Materials Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India.

^{*} Polymer and Color Chemistry Program, North Carolina State University, Raleigh, NC, 27695, USA.

Electronic Supplementary Information

DSSC fabrication and characterization	3
Calculation of GSOP by Cyclic Voltammetry	4
Figure 1S Nyquist and Bode plots for N719	5
Table 1S. Cartesian coordinates for the optimized geometry of DBA-3	5
Table 2S. Cartesian coordinates for the optimized geometry of DBA-4	7
Table 3S. Cartesian coordinates for the optimized geometry of DBA-4	8
Figure 2S. ¹ H NMR spectrum of 2 in CDCl ₃	9
Figure 3S. ¹³ C NMR spectrum of 2 in CDCl ₃	10
Figure 4S. ¹ H NMR spectrum of 3 in CDCl ₃	10
Figure 5S. ¹ H NMR spectrum of DBA-3 in DMSO	11
Figure 6S. ¹³ C NMR spectrum of DBA-3 in DMSO	11
Figure 7S. ¹ H NMR spectrum of 5a in CDCl ₃	12
Figure 8S. ¹ H NMR spectrum of DBA-4 in DMSO	12
Figure 9S. ¹³ C NMR spectrum of DBA-4 in DMSO	13
Figure 10S. ¹ H NMR spectrum of DBA-5 in DMSO	13

Figure 11S. ¹³ C NMR spectrum of DBA-5 in DMSO	14
Figure 12S. Mass spectrum of 2	14
Figure 13S. Mass spectrum of 3	15
Figure 14S. Mass spectrum of DBA-3	15
Figure 15S. Mass spectrum of DBA-4	16
Figure 16S. Theoretically obtained FT-IR of DBA-3	16
Figure 17S. Simulated absorption spectra of DBA-3	17
Figure 18S. Simulated absorption spectrum of DBA-5	17

DSSC fabrication and characterization

Fluorine-doped tin oxide (FTO) coated glasses (2.2 mm thickness, sheet resistance of 8 Ω cm⁻², TEC, Pilkington) were washed with detergent, water, acetone and ethanol, sequentially. After this thoroughly cleaned plates were immersed into an aqueous solution containing 40 mM of TiCl₄, maintained at 70 °C for 30 minutes and subsequently washed with water and ethanol. A thin layer (8-12 µm thick) of TiO₂ (Solaronix, Ti-Nanoxide T/SP) was deposited (active area, 0.18 cm²) on transparent conducting glass by squeegee printing followed by drying at 125 °C for 5 minutes, 350 °C for 5 minutes and curing at 500 °C for 30 minutes. Next, scattering layer of (5 µm thick) TiO₂ particles (Solaronix, Ti-Nanoxide R/SP,) was printed. Then, TiO₂ electrodes were heated under an air flow at 350 °C for 10 minutes, followed by heating at 500 °C for 30 minutes. After cooling to room temperature, the TiO₂ electrodes were treated with 40 mM aqueous solution of TiCl₄ at 70 °C for 30 minutes and then washed with water and ethanol. The electrodes were heated again at 500 °C for 30 minutes and then allowed to cool to 80 °C. The dye solutions (0.5 mM) were prepared by dissolving the dye in 1:1 acetonitrile and tert-butyl alcohol. The co-adsorbate deoxycholic acid was added to the dye solution at a concentration of 1, 10 and 20 mM. The electrodes were immersed in the dye solutions and then kept at 25 °C for 20 hours to adsorb the dye onto the TiO₂ surface. For preparing the counter electrode, pre-cut TCO glasses were washed with water followed by 0.1M HCl in EtOH, and sonicated in acetone bath for 10 minutes. These washed TCO were then dried at 400 °C for 15 minutes. A thin layer of Ptpaste (Solaronix, Platisol T/SP) on TCO was printed and the printed electrodes were then cured at 450 °C for 10 minutes. The dye sensitized TiO₂ electrodes were sandwiched with Pt counter electrodes and the electrolyte (Solaronix, Iodolyte AN-50) was then injected into the cell, while the two electrodes were held together with the clips. Co-sensitization was done as per the procedure reported by Han et al.¹

Current-voltage plots of DSSCs were obtained using a Keithley 2400 source meter under illumination of AM 1.5 G solar light from solar simulator (SOL3A, Oriel), coupled with a 450 W xenon lamp (91160, Oriel). A reference Si solar cell (Newport Oriel, 91150V) was used to calibrate the incident light intensity to 1 Sun (100 mW cm⁻²). The measurements were precisely controlled using Oriel IV Test Station software. Further, IPCE (incident monochromatic photon to current conversion efficiency) experiments were performed using a system (QEX10, PV Measurements, USA) connected to a 75 W short arc xenon lamp (UXL-75XE, USHIO, Japan) as a light source linked to a monochromater. Before measurements, calibration of incident light was performed with the help of a silicone photodiode (IF035, PV Measurements). All the measurements were carried out without the use of anti-reflecting film in DC mode.

The electrochemical impedance spectra were obtained using impedance analyzer potentiostat (Bio-Logic SP-150) under illumination with a solar simulator (SOL3A, Oriel) equipped with a 450 W xenon lamp (91160, Oriel). Impedance spectra were recorded over a frequency range of 100 mHz to 200 kHz at 298 K. During the measurements, the applied bias voltage was fixed at the V_{oc} of the DSSCs, with AC amplitude set at 10 mV. The obtained spectra were fitted using Z-Fit software (Bio-Logic).

Calculation of GSOP by Cyclic Voltammetry

The experimental HOMO energy values for **DBA-3**, **DBA-4** and **DBA-5** dyes were measured using a cyclic voltammetry (CV). The CV measurements were carried out in anhydrous dichloromethane with 0.1 M [TBA][PF₆] as an electrolyte at a scan rate of 100 mVs⁻¹. Glassy

carbon was used as the working electrode (WE), Pt wire as counter electrode and Ag/Ag^+ in ACN was used as the reference electrode. Fc/Fc⁺ was used as internal reference which was converted to NHE by addition of 0.63 V.

Figure 1S. Nyquist and Bode plots for N719

Table 1S. Cartesian coordinates for the optimized geometry of DBA-3

ATOM	CARTES	IAN COORDINATE	S
1 c	0.00873451220963	0.00725512226488	-0.02650524002574
2 c	2.67424416863803	0.05268035806099	-0.09826696952397
3 c	4.02869744477164	2.29118771249096	-0.10782286947904
4 c	2.66716505651788	4.53737933452189	-0.04186111556583
5 c	0.00922059429199	4.57259801801708	0.03608352005751
6 c	-1.30753760744957	2.29129674529872	0.03617064153100
7 n	3.49989656746038	7.03806054964013	-0.06910224894844
8 c	1.49115348846147	8.60166767909209	-0.00784532118671
9 c	-0.76071165987378	7.21864104609681	0.05929178939771
10 c	-3.31189499996092	7.99257073849242	0.14163125272800
11 c	-1.36362501134651	-2.43311948872798	-0.01491900087627
12 c	6.13247781221988	7.85121330039104	-0.05983188654521
13 c	7.32506709623295	7.84429119466482	2.57524011385927
14 c	10.09084701109201	8.67610747827448	2.52174445055341
15 c	11.32191640482385	8.72157469319262	5.13684390785072

16 c	14.08785103248215	9.55642870590700	5.09293409821111
17 c	15.30386690384078	9.60824755860825	7.71107755781351
18 c	-3.56298377836438	-2.76570089052963	1.40176829817758
19 c	-4.87473976298563	-5.04446099781243	1.41985336740406
20 c	-3.98939545704031	-7.07297294570810	-0.00847642613262
21 c	-1.78967320463824	-6.77954838573735	-1.43913150927314
22 c	-0.50895607618289	-4.50332912796762	-1.43389424114583
23 o	-5.11633425681743	-9.38145530354112	-0.12917488738041
24 c	-7.37415882911128	-9.77836535976815	1.25850371608136
25 c	-4.58501824959663	10.26019942965403	0.17945558299941
26 c	-3.43513383932330	12.76656827219468	0.10900162455364
27 n	-5.11275527507680	14.79765020421195	0.14480587948184
28 h	-4.32857585940001	16.53539958322261	0.09391646419650
29 c	-7.71826750655431	14.72591601252915	0.24443821601897
30 n	-8.70100248224615	12.31403375720375	0.31323513438072
31 h	-10.60220153342016	12.18325682860161	0.39060314691405
32 c	-7.37165486031334	10.04275785663872	0.29272471487625
33 o	-8.54230629698032	8.06350935198177	0.36959001837127
34 o	-1.17226759896172	13.22746762699193	0.02281987210099
35 o	-9.01654095035732	16.61087117445450	0.26940610824553
36 h	-7.94368212120473	-11.71370381095269	0.87285697162256
37 h	-8.87178410042627	-8.49195984277973	0.64944424517667
38 h	-7.06392270160799	-9.55098788035969	3.28857084096725
39 h	17.27336321089380	10.20975217642893	7.61413073013414
40 h	15.26253774770496	7.74189298857807	8.59191863103792
41 h	14.31335067536266	10.91115361846517	8.96871680992732
42 h	14.21602050965610	11.43429308058871	4.23525100078770
43 h	15.16159290160654	8.29063953246011	3.85841026037785
44 h	11.19045204391432	6.83984145168887	5.98953988847980
45 h	10.24684306158924	9.98546618983992	6.37419067151383
46 h	10.22372556527106	10.55957398532008	1.67315653287252
47 h	11.16631074020379	7.41292390918378	1.28322093914164
48 h	7.17488189976351	5.95237838548205	3.39079026454806
49 h	6.23365044041451	9.10039182599620	3.79995216359208
50 h	6.19020960900032	9.74601742879230	-0.86616996131753
51 h	7.18466771308757	6.61703475100717	-1.33457141808580
52 h	-4.62842164757738	6.41955647174085	0.19774051556331
53 h	1.70046229470668	10.62144465479003	-0.02188023945485
54 h	-1.13086323765489	-8.35759956652922	-2.55834294971589
55 h	-6.55865932352145	-5.21448690254933	2.55893081535349
56 h	1.16332366587601	-4.30992073524669	-2.59446874640754
57 h	-4.26034427756948	-1.22884077845920	2.55665507977627
58 h	6.07208146223050	2.26511357918141	-0.14473125066877

ATOM	CARTES	SIAN COORDINATES	S
1 c	0.03718266438195	0.03933452536168	-0.04348037524972
2 c	2.69503498039441	0.10684833765330	-0.18927428610477
3 c	3.98948259741490	2.37206279579069	-0.15822310265928
4 c	2.58073972991385	4.58853753536722	0.02062160904898
5 c	-0.06866900410301	4.56104572348524	0.16374175913254
6 c	-1.36156480039285	2.25461064595167	0.13239957067902
7 n	3.36073038853434	7.11099713701962	0.06488533975711
8 c	1.32627926355549	8.62360877929159	0.23483211412117
9 c	-0.89570855637264	7.18313191375960	0.30502029251310
10 c	-3.46055671161948	7.89053096316478	0.45324889067504
11 o	-0.98878291161566	-2.32102433666280	-0.09204363001347
12 c	-3.65459716750372	-2.56079880423758	0.05219616035605
13 c	5.97512622375275	7.97864888475464	0.03055001156792
14 c	7.27006783406742	7.83449874633510	2.61286399042747
15 c	10.01655523198358	8.72285946649991	2.50129349879122
16 c	11.35694000180297	8.62295898261986	5.06031057952627
17 c	14.10853658740053	9.49848239093271	4.95292592238271
18 c	15.43548931228495	9.40242937083271	7.51533450275819
19 c	-4.79149150784888	10.12182556438979	0.59389626714149
20 c	-3.70502186855752	12.65623326352090	0.63611890302502
21 n	-5.43319252419138	14.64075361618941	0.77869940738994
22 h	-4.69322155926013	16.39831673784463	0.80483573209086
23 c	-8.03533052450584	14.49816074225236	0.88355587390793
24 n	-8.95641241210490	12.06099363244571	0.84321077272441
25 h	-10.85337675955114	11.87842167381675	0.91829725592335
26 c	-7.56990384511183	9.82832191213896	0.70738101885894
27 о	-8.69077274968572	7.81795397728186	0.68836198098421
28 o	-1.45509265523352	13.17779739448391	0.55969040590566
29 o	-9.38143138173084	16.34590692847291	1.00119677997593
30 h	17.39315368380208	10.03277090540020	7.37274701356497
31 h	15.44977208811549	7.48444110586104	8.27832811866559
32 h	14.48776381761227	10.61244461600574	8.89314131706710
33 h	-4.04642054300854	-4.57571051687541	-0.01292962858545
34 h	-4.58408252457544	-1.63254396617488	-1.54262909498717
35 h	-4.38886940267254	-1.77825728061313	1.81763443925062
36 h	14.17867394982346	11.42812889212897	4.21125121759570
37 h	15.14213909265602	8.32749698861551	3.59665603416241

Table 2S. Cartesian coordinates for the optimized geometry of **DBA-4**

38 h	11.28473666541115	6.68933864024956	5.79613258539703	
39 h	10.32129414915722	9.79052280536155	6.41980616658681	
40 h	10.08197771818377	10.65904642843732	1.77201008369480	
41 h	11.05953942102527	7.56273087032251	1.14017682052260	
42 h	7.18749064708874	5.89389574309360	3.31537710964413	
43 h	6.20651193746173	8.99102659047630	3.95449409347402	
44 h	5.96403353401473	9.92096064504063	-0.65567875209598	
45 h	7.00383334199664	6.85057143947390	-1.35747602035270	
46 h	-4.73937549293270	6.28583940173355	0.45676001974376	
47 h	1.48871494458080	10.64680651819811	0.29196981881365	
48 h	3.69461027439874	-1.66931667210900	-0.32541183762154	
49 h	-3.39802383586041	2.20833426078871	0.23931711998411	
50 h	6.03005657402482	2.39231544998920	-0.27093993293328	
*****	*****	****	*****	****

 Table 3S. Cartesian coordinates for the optimized geometry of DBA-5

ATOM	CARTES	IAN COORDINATES	5
1 c	0.05777891712790	0.02057259377347	-0.14081896544037
2 c	2.70260227682016	0.06806798201826	-0.27099055362859
3 c	4.01764693440494	2.33407074461162	-0.20597726347878
4 c	2.60612087779350	4.54363575190931	-0.00898127804175
5 c	-0.05320787059931	4.54057864073715	0.12115794122347
6 c	-1.33188197805891	2.23296840580924	0.05269976847401
7 n	3.40224644124266	7.05550862822968	0.07313335027100
8 c	1.37331632179828	8.58449758822791	0.25431195099501
9 c	-0.85687843643001	7.16848804831417	0.29427686620234
10 c	-3.41899447493671	7.90174483062172	0.44430711628727
11 c	6.02247382168463	7.90824154805079	0.05785094465250
12 c	7.30605189570638	7.73083859724357	2.64339764166480
13 c	10.05560827538701	8.61191234727840	2.55249357930774
14 c	11.39439822956646	8.45224337503608	5.10918933769570
15 c	14.14205167712888	9.34248541027247	5.02630199305096
16 c	15.47708540420314	9.15763073390114	7.57951913553408
17 c	-4.72027582094671	10.14597792470597	0.61257696797674
18 c	-3.60286755222558	12.66788906688515	0.69011573744884
19 n	-5.30574252136510	14.67033176316269	0.85588715973438
20 h	-4.54410979340397	16.41814839414796	0.90735347265606
21 c	-7.91042397989699	14.55940073722256	0.95610889771254
22 n	-8.86245104060155	12.13519949189134	0.88211713317735
23 h	-10.76183607774400	11.97571561050902	0.95325401173902
24 c	-7.50509859223158	9.88662775875583	0.71864334837615
25 o	-8.64912900903276	7.89162274772791	0.67267725391550
26 o	-1.34653679381307	13.16196470407299	0.62368630037016

27 о	-9.23171453289152	16.42281257387619	1.09708397021773
28 h	17.42927402668640	9.80853561010018	7.45621531153118
29 h	15.50875471857082	7.21154131255457	8.26712993987522
30 h	14.52418692269833	10.30548722245720	9.00611642060173
31 h	14.20195527714971	11.29838111329091	4.35595573356325
32 h	15.17645165917832	8.22651633283266	3.62499924605306
33 h	11.33020346787158	6.49971213986781	5.79412267831008
34 h	10.35309762817345	9.57947445593210	6.49810437102833
35 h	10.12770527025292	10.56275660301448	1.86402290028722
36 h	11.09562681896536	7.47719673754274	1.16785859878291
37 h	7.21469308078651	5.78243855710107	3.32297550399281
38 h	6.24126791535633	8.87512416318979	3.99452643747304
39 h	6.02514175961747	9.85714861074920	-0.60961146543560
40 h	7.04978507056852	6.78808464629800	-1.33723999691328
41 h	-4.71424808369748	6.31025089338069	0.42256262145701
42 h	1.55491142247818	10.60522121438803	0.33967460505327
43 h	3.73557794123931	-1.68940276999521	-0.42355953202813
44 h	-0.91390789407592	-1.77741563326141	-0.19416556323007
45 h	-3.37331435000031	2.15705865145274	0.14670533101969
46 h	6.05863013271034	2.36253062429245	-0.30484230531800
*****	*****	****	*****

NMR Spectra

Figure 3S. ¹³C NMR spectrum of 2 in CDCl₃

Figure 4S. ¹H NMR spectrum of 3 in CDCl₃

Figure 7S. ¹H NMR spectrum of 5a in CDCl₃

Figure 8S. ¹H NMR spectrum of DBA-4 in DMSO

Figure 9S. ¹³C NMR spectrum of DBA-4 in DMSO

Figure 10S. ¹H NMR spectrum of DBA-5 in DMSO

Figure 11s. ¹³ C NMR spectrum of DBA-5 in DMSO

Mass Spectra

Figure 12S. Mass spectrum of 2

Figure 13S. Mass spectrum of 3

Figure 14S. Mass spectrum of DBA-3

Figure 15S. Mass spectrum of DBA-4

Figure 16S. Theoretically obtained FT-IR spectrum of DBA-3

Figure 17S. Simulated absorption spectrum of DBA-3

Figure 18S. Simulated absorption spectrum of DBA-5

REFERENCES

1. L. Han, A. Islam, H. Chen, C. Malapaka, B. Chiranjeevi, S. Zhang, X. Yang and M. Yanagida, *Energy Environ. Sci.*, 2012, **5**, 6057–6060.