Supporting Information

Access to enhanced catalytic core-shell CuO-Pd nanoparticles for the organic transformations

Kanchan Mishra, Nagaraj Basavegowda, and Yong Rok Lee*

School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea *Fax: 82-53-810-4631; Tel: 82-53-810-2529; E-mail: yrlee@yu.ac.kr

T٤	Page						
1.	1. Experimental section						
2.	2. Characterization of nanoparticles						
	a.	XPS spectra	S2				
	b.	HRTEM images		S2			
	c.	EDS peaks	S3				
	d.	FTIR spectra	S3				
	e.	Phytochemical constituents of C. rotundus extract	S4				
	f.	UV-Vis spectra	S4				
	g.	DSC-TGA	S5				
	h.	Zeta potential	S5				
	i.	AFM images	S6-S7				
	j.	XRD patterns after 5 th cycle	S 8				
3.	3. Characterization of spectral data (4a-4e), (6a-6e), and (9a-9e))			
4. Copies of NMR spectra of compounds (9a-9e)			S11-S1	5			

1. Experimental section

Synthesis of CuO and Pd nanoparticles

A volume of 50 mL of the C. rotundus rhizome extract solution was added to 100 mL of an aqueous solution of 1.0 mmol Cu(OAc)₂. The mixture solution was then sonicated at 60 °C for 2 h. After 2 h, the color of the final solution changed to black, which indicated the formation of CuO nanoparticles. The synthesized nanoparticles were isolated by centrifugation and purified.

A volume of 50 mL of the C. rotundus rhizome extract solution was added to 100 mL of an aqueous solution of 1.0 mmol PdCl₂. The mixture solution was then sonicated at 60 °C for 2 h. After 2 h, the color of the final solution changed to dark brown, which indicated the formation of Pd nanoparticles. The synthesized nanoparticles were isolated by centrifugation and purified.

2. Characterization of nanoparticles

a. XPS spectra

Fig. S1. (a) XPS full scan survey of CuO-Pd NPs, and (b) C 1s XPS spectra of CuO-Pd NPs.

b. HRTEM images of CuO-Pd NPs

Fig. S2. HR-TEM images of CuO-Pd NPs at two different locations.

c. EDS peaks of CuO-Pd NPs

Fig. S3. EDS peaks of CuO-Pd NPs.

d. FTIR Spectra

Fig. S4. FTIR spectra of CuO-Pd NPs and Cyperus rotundus rhizome extract.

e. Phytochemical constituents of C. rotundus extract.

Fig. S5. Phytochemical constituents of *C. rotundus* extract.

f. UV-Vis spectra

Fig. S6. UV-Vis spectra of (a) Cu(OAc)₂, PdCl₂, and CuO-Pd NPs and (b) Cyperus rotundus,.

DSC-TGA spectra g.

Fig. S7. DSC-TGA spectra of CuO-Pd NPs

h. Zeta potential distribution

Fig. S8: Zeta potential (ZP) distribution of CuO-Pd NPs.

CuO-Pd NPs	T (°C)	ZP (mV)	Z-dev. (mV)
1	25	-9.8	4.40
2	25	-10.2	6.11
3	25	-9.82	5.52
	Avg.	-9.94	5.34
	Std Dev	0.225	0.869

i. AFM images

Fig. S9: Roughness analysis of CuO-Pd NPs at 5 µm².

Fig. S10: Roughness analysis of CuO-Pd NPs at 1.3 μ m².

Fig. S11: Particle height of CuO-Pd NPs.

Fig. S12: Section analysis of CuO-Pd NPs.

j. XRD patterns after 5th cycle

Fig. S13: XRD patterns of CuO-Pd NPs before and after recycling for five times.

3. Characterization spectral data (4a-4e)¹, (6a-6e)¹, and (9a-9e)

2,3-Diphenyl-2,3-dihydroquinazolin-4(1*H***)-one (4a)**. Yield: 97%; yellow solid; mp 205-206 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 7.77 (1H, d, *J*=7.8 Hz), 7.64 (1H, s), 7.42-7.18 (11H, m), 6.79 (1H, d, *J*=8.1 Hz), 6.74 (1H, t, *J*=7.2 Hz), 6.30 (1H, s); ¹³C NMR (75 MHz, DMSO- d_6) δ 162.2, 146.5, 140.7, 140.6, 133.7, 128.5, 128.3, 128.2, 127.9, 126.5, 126.2, 125.9, 117.4, 115.3, 114.7, 72.6; IR (KBr) 3427, 3294, 3061, 2832, 1633, 1511, 1392, 1332, 1257, 1158, 1025, 754 cm⁻¹; HRMS *m/z* (M⁺) calcd for C₂₀H₁₆N₂O: 300.1263. Found: 300.1265.

2-(4-Methoxyphenyl)-3-m-tolyl-2,3-dihydroquinazolin-4(1*H***)-one (4b)**. Yield: 92%; yellow solid; mp 209-210 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.75 (1H, d, *J*=7.5 Hz), 7.54 (1H, s), 7.33-7.19 (5H, m), 7.14 (1H, s), 7.03 (2H, t, *J*=8.7 Hz), 6.88-6.85 (2H, m), 6.77 (1H, t, *J*=8.1 Hz), 6.22 (1H, s), 3.71 (3H, s), 2.27 (3H, s); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 162.2, 159.0, 146.5, 140.8, 137.8, 133.6, 132.7, 128.3, 127.9, 127.8, 126.8, 126.6, 123.2, 117.4, 115.4, 114.7, 113.6, 72.3, 55.0, 20.8; IR (KBr) 3424, 3301, 2961, 2833, 1634, 1507, 1393, 1301, 1248, 1170, 1026, 830, 766 cm⁻¹; HRMS *m/z* (M⁺) calcd for C₂₂H₂₀N₂O₂: 344.1525. Found: 344.1525.

3-(4-Isopropylphenyl)-2-(4-methoxyphenyl)-2,3-dihydroquinazolin-4(1*H***)-one (4c). Yield: 95%; yellow solid; mp 171-172 °C; ¹H NMR (300 MHz, DMSO-***d***₆) \delta 7.75 (1H, d,** *J***=7.5 Hz), 7.55 (1H, s), 7.32-7.21 (7H, m), 6.86 (2H, d,** *J***=8.4 Hz), 6.74 (2H, t,** *J***=8.4 Hz), 6.19 (1H, s), 3.70 (3H, s), 2.91-2.82 (1H, m), 1.19 (6H, d,** *J***=6.9 Hz); ¹³C NMR (75 MHz, DMSO-***d***₆) \delta 162.1, 159.05, 146.4, 145.9, 138.6, 133.5, 132.8, 127.8, 127.6, 126.3, 125.9, 117.3, 115.4, 114.7, 113.6, 72.2, 54.9, 32.9, 23.7; IR (KBr) 3420, 3298, 2956, 1630, 1508, 1392, 1332, 1249, 1177, 1027, 833, 700 cm⁻¹; HRMS** *m/z* **(M⁺) calcd for C₂₄H₂₄N₂O₂: 372.1838. Found: 372.1840.**

3-(4-Fluorophenyl)-2-(4-methoxyphenyl)-2,3-dihydroquinazolin-4(1*H***)-one (4d). Yield: 94%; yellow solid; mp 259-260 °C; ¹H NMR (300 MHz, DMSO-d_6) \delta 7.74 (1H, d,** *J***=7.8 Hz), 7.49 (1H, s), 7.29-7.12 (7H, m), 6.86 (2H, d,** *J***=8.7 Hz), 6.76 (2H, t,** *J***=7.8 Hz), 6.23 (1H, s), 3.70 (3H, s); ¹³C NMR (75 MHz, DMSO-d_6) \delta 162.5, 159.2, 146.8, 133.7, 132.2, 128.8, 128.7, 128.09, 127.9, 117.4, 115.4, 115.1, 115.0, 114.6, 113.6, 72.6, 55.0; IR (KBr) 3427, 3302, 1643, 1504, 1390, 1305, 1245, 1026, 994, 832, 760 cm⁻¹; HRMS** *m/z* **(M⁺) calcd for C₂₁H₁₇FN₂O₂: 348.1274. Found: 348.1272.**

2,3-Bis(4-methoxyphenyl)-2,3-dihydroquinazolin-4(1*H***)-one (4e)**. Yield: 96%; yellow solid; mp 227-228 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.74 (1H, d, *J*=7.8 Hz), 7.44 (1H, s), 7.31-7.23 (3H, m), 7.15 (2H, d, *J*=8.7 Hz), 6.89-

6.84 (4H, m) 6.75 (2H, t, *J*=7.8 Hz), 6.16 (1H, s), 3.73 (3H, s), 3.70 (3H, s); ¹³C NMR (75 MHz, DMSO- d_6) δ 162.3,159.1, 157.2, 146.6, 133.5, 132.7, 127.9, 127.8, 127.4, 117.3, 115.2, 114.6, 113.7, 113.6, 72.8, 55.1, 55.0; IR (KBr) 3426, 2936, 2837, 1636, 1510, 1394, 1441,1243,1174,1025, 996, 830, 762 cm⁻¹; HRMS *m/z* (M⁺) calcd for C₂₂H₂0N₂O₃: 360.1474. Found: 360.1477.

3'-Phenyl-1'*H***-spiro[indoline-3,2'-quinazoline]-2,4'(3'***H***)-dione (6a). Yield: 98%; yellow solid; mp 264-266 °C; ¹H NMR (300 MHz, DMSO-d_6) \delta 10.39 (1H, s), 7.68 (1H, d,** *J***=7.5 Hz), 7.60 (1H, s), 7.53 (1H, d,** *J***=7.5 Hz), 7.30 (1H, t,** *J***=7.8 Hz) 7.24-7.12 (4H, m), 7.01-6.98 (2H, m), 6.92 (1H, t,** *J***=7.5 Hz), 6.78-6.70 (2H, m), 6.64 (1H, d,** *J***=7.5 Hz); ¹³C NMR (75 MHz, DMSO-d_6) \delta 175.6, 163.8, 146.3, 141.4, 138.3, 134.2, 134.0, 129.9, 129.7, 129.2, 128.3, 127.9, 118.4,115.0,114.6, 114.1, 112.6, 76.8; IR (KBr) 3447, 3303, 1721, 1644, 1615, 1486, 1358, 1194, 1105, 1012, 964, 865, 752 cm⁻¹; HRMS** *m/z* **(M⁺) calcd for C₂₁H₁₅N₃O₂: 341.1164. Found: 341.1161.**

3'-m-Tolyl-1'H-spiro[indoline-3,2'-quinazoline]-2,4'(3'H)-dione (6b). Yield: 95%; yellow solid; mp 274-276 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 10.40 (1H, s), 7.66 (1H, d, *J*=7.8 Hz), 7.59 (1H, s), 7.53 (1H, d, *J*=7.2 Hz), 7.30 (1H, t, *J*=7.8 Hz), 7.15 (1H, t, *J*=7.5 Hz), 7.07 (1H, t, *J*=7.2 Hz), 6.98-6.90 (3H, m), 6.82 (1H, s), 6.75 (1H, t, *J*=8.4 Hz), 6.70 (1H, d, *J*=8.1 Hz), 6.64 (1H, d, *J*=7.5 Hz), 2.15 (3H, s); ¹³C NMR (75 MHz, DMSO- d_6) δ 174.3, 163.9, 146.5, 143.6, 138.3, 134.1, 131.4, 128.8, 128.7, 127.9, 127.1, 126.6, 123.1, 118.2, 115.1, 114.6, 109.3, 76.6, 21.2; IR (KBr) 3298, 3206, 3093, 1724, 1643, 1616, 1485, 1361, 1236, 1193, 1100, 1048, 963, 751 cm⁻¹; HRMS *m/z* (M⁺) calcd for C₂₂H₁₇N₃O₂: 355.1321. Found: 355.1318.

3'-(4-Isopropylphenyl)-1'*H***-spiro[indoline-3,2'-quinazoline]-2,4'(3'***H***)-dione (6c). Yield: 98%; yellow solid; mp 276-278 °C; ¹H NMR (300 MHz, DMSO-d_6) \delta 10.36 (1H, s), 7.66 (1H, d,** *J***=7.5 Hz), 7.56 (1H, s), 7.52 (1H, d,** *J***=7.5 Hz), 7.29 (1H, t,** *J***=8.1 Hz), 7.15 (1H, t,** *J***=7.5 Hz), 7.08-6.87 (5H, m), 6.77-6.63 (3H, m), 2.79-2.73 (1H, m),1.09 (6H, d,** *J***=6.9 Hz); ¹³C NMR (75 MHz, DMSO-d_6) \delta 175.3, 163.6, 147.4, 146.0, 141.5, 135.6, 133.5, 130.6, 129.0, 127.5,127.4, 126.3, 126.2, 122.1,117.6, 114.5,114.0, 110.0, 76.3, 32.7, 23.6, 23.5; IR (KBr) 3311, 3066, 2961, 1725, 1632, 1511, 1484, 1359, 1214, 1190, 1105, 1051, 955, 817, 752 cm⁻¹; HRMS** *m/z* **(M⁺) calcd for C₂₄H₂₁N₃O₂: 383.1634. Found: 383.1630.**

3'-(4-Fluorophenyl)-1'H-spiro[indoline-3,2'-quinazoline]-2,4'(3'H)-dione (6d). Yield: 93%; yellow solid; mp 295-296 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 10.47 (1H, s), 7.67 (2H, t, *J*=3.3 Hz), 7.59 (1H, d, *J*=10.5 Hz), 7.31 (1H, t, *J*=7.2 Hz), 7.18 (1H, t, *J*=7.5 Hz), 7.09-6.92 (5H, m), 6.78-6.65 (3H, m); ¹³C NMR (75 MHz, DMSO- d_6) δ 175.4, 163.9, 146.3, 141.4, 134.4, 134.3, 134.1, 129.8, 129.7, 127.9, 118.4, 116.2, 115.9, 114.8, 114.6, 114.2, 112.6, 76.9; IR (KBr) 3272, 3066, 1726, 1642, 1616, 1509, 1483, 1360, 1328, 1221, 1197, 1154, 1099, 961, 827, 750 cm⁻¹; HRMS *m/z* (M⁺) calcd for C₂₁H₁₄FN₃O₂: 359.1070. Found: 359.1068.

3'-Benzyl-1'H-spiro[indoline-3,2'-quinazoline]-2,4'(3'H)-dione (6e). Yield: 96%; yellow solid; mp 210-211 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 10.34 (1H, s), 7.72 (1H, d, *J*=7.8 Hz), 7.45 (1H, s), 7.36-7.24 (3H, m), 7.17-7.15 (3H, m), 6.93-6.88 (3H, m), 6.83 (1H, d, *J*=7.8 Hz), 6.76 (1H, t, *J*=7.5 Hz), 6.67 (1H, d, *J*=7.5 Hz), 4.48 (1H, d, *J*=15.3 Hz), 4.15 (1H, d, *J*=15.3 Hz); ¹³C NMR (75 MHz, DMSO- d_6) δ 175.4, 164.5, 146.4, 142.9, 137.8, 133.8, 131.7, 128.2, 127.8, 127.2, 126.8, 126.7, 122.4, 118.1, 115.1, 114.4, 110.9, 75.5, 46.3; IR (KBr) 3297, 3090, 2944, 1727, 1625, 1483, 1383, 1323, 1242, 1191, 968. 750 cm⁻¹; HRMS *m/z* (M⁺) calcd for C₂₂H₁₇N₃O₂: 355.1321. Found: 355.1318.

6-Amino-1,3-dimethyl-5-(2-phenyl-4*H***-chromen-4-yl)pyrimidine-2,4(1***H,3H***)-dione (9a). Yield: 87%; red solid; mp 146-148 °C; ¹H NMR (300 MHz, CDCl₃) \delta 7.65 (2H, d,** *J***=6.3 Hz), 7.38-7.31 (3H, m), 7.15 (1H, t,** *J***=7.8 Hz), 7.07-6.94 (3H, m), 5.55 (1H, d,** *J***=3.0 Hz), 5.39 (1H, d,** *J***=3.9 Hz), 4.86 (2H, s), 3.30 (3H, s), 3.28 (3H, s); ¹³C NMR (75 MHz, CDCl₃) \delta 162.8, 151.4, 151.0, 149.2, 133.2, 128.8, 128.7, 128.3, 128.1, 124.3, 124.2, 121.2, 116.3, 98.9, 92.4, 29.1, 28.8, 28.4; IR (KBr) 3340, 3215, 1735, 1692, 1581, 1488, 1315, 1187, 1110, 1041, 916, 756, 502 cm⁻¹; HRMS** *m/z* **(M⁺) calcd for C₂₁H₁₉N₃O₃: 361.1426. Found: 361.1430.**

6-Amino-1,3-dimethyl-5-(6-methyl-2-phenyl-4*H***-chromen-4-yl)pyrimidine-2,4(1***H***,3***H***)-dione (9b). Yield: 85%; red solid; mp 151-153 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.64 (2H, d,** *J***=7.8 Hz), 7.36-7.28 (3H, m), 6.96-6.86 (3H, m), 5.53 (1H, d,** *J***=3.6 Hz), 5.37 (1H, d,** *J***=4.2 Hz), 4.80 (2H, s), 3.33 (3H, s), 3.29 (3H, s), 2.20 (3H, s); ¹³C NMR (75 MHz, CDCl₃) δ 162.8, 151.4, 151.1, 149.3, 149.0, 133.7, 133.4, 128.9, 128.8, 128.7, 128.3, 124.4, 120.8, 116.0,**

98.7, 92.6, 29.2, 28.7, 28.4, 20.6; IR (KBr) 3337, 3213, 1735, 1693, 1583, 1492, 1374, 1125, 1043, 1012, 942, 760, 506 cm⁻¹; HRMS *m/z* (M⁺) calcd for C₂₂H₂₁N₃O₃: 375.1583. Found: 375.1579.

6-Amino-1,3-dimethyl-5-(8-methyl-2-phenyl-4*H***-chromen-4-yl)pyrimidine-2,4(1***H*,3*H***)-dione (9c)**. Yield: 85%; red solid; mp 150-152 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.68 (2H, d, *J*=7.8 Hz), 7.40-7.33 (3H, m), 7.03 (1H, d, *J*=6.9 Hz), 6.95-6.86 (2H, m), 5.62 (1H, d, *J*=3.6 Hz), 5.45 (1H, d, *J*=3.9 Hz), 4.63 (2H, s), 3.37 (3H, s), 3.30 (3H, s), 2.39 (3H, s); ¹³C NMR (75MHz, CDCl₃) δ 162.8, 151.2, 151.1, 149.4, 149.2, 133.6, 129.5, 128.7, 128.5, 126.4, 125.6, 124.4, 123.7, 120.9, 99.0, 93.0, 29.5, 28.7, 28.5, 16.0; IR (KBr) 3337, 3220, 1691, 1585, 1497, 1445, 1375, 1262, 1174, 1099, 1088, 763, 699, 507 cm⁻¹; HRMS *m/z* (M⁺) calcd for C₂₂H₂₁N₃O₃: 375.1583. Found: 375.1582.

6-Amino-1,3-dimethyl-5-(3-methyl-2-phenyl-4*H***-chromen-4-yl)pyrimidine-2,4(1***H*,3*H***)-dione (9d)**. Yield: 84%; red solid; mp 153-155 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.44 (2H, d, *J*=6.3 Hz), 7.40-7.35 (3H, m), 7.10 (2H, d, *J*=6.9 Hz), 6.96 (1H, t, *J*=7.2 Hz), 6.89 (1H, d, *J*=8.4 Hz), 5.45 (1H, s), 4.89 (2H, s), 3.35 (3H, s), 3.34 (3H, s), 1.69 (3H, s); ¹³C NMR (75 MHz, CDCl₃) δ 163.2, 151.2, 151.1, 151.0, 145.3, 134.4, 128.8, 128.7, 128.5, 128.1, 127.8, 123.8, 121.7, 115.6, 107.3, 91.9, 34.7, 28.8, 28.5, 16.8; IR (KBr) 3334, 3207, 1689, 1584, 1489, 1239, 1193, 1094, 1062, 910, 702, 506 cm⁻¹; HRMS *m/z* (M⁺) calcd for C₂₂H₂₁N₃O₃: 375.1583. Found: 375.1585.

6-Amino-5-(6-bromo-2-phenyl-4*H***-chromen-4-yl)-1,3-dimethylpyrimidine-2,4(1***H***,3***H***)-dione (9e). Yield: 81%; red solid; mp 159-161 °C; ¹H NMR (600 MHz, CDCl₃) \delta 7.59 (2H, d,** *J***=7.2 Hz), 7.33-7.28 (3H, m), 7.22 (1H, dd,** *J***=9.0, 1.8 Hz), 7.16 (1H, s), 6.87 (1H, d,** *J***=9.0 Hz), 5.55 (1H, s), 5.37 (1H, d,** *J***=4.2 Hz), 4.58 (2H, s), 3.34 (3H, s), 3.28 (3H, s); ¹³C NMR (150 MHz, CDCl₃) \delta 162.7, 151.3, 151.0, 150.3, 149.4, 132.9, 131.4, 131.2, 129.0, 128.5, 124.4, 123.7, 118.1, 116.5, 98.7, 92.4, 29.2, 28.7, 28.5; IR (KBr) 3336, 3208, 1690, 1586, 1490, 1241, 1195, 1097, 1082, 915, 701, 505 cm⁻¹; HRMS** *m/z* **(M⁺) calcd for C₂₁H₁₈BrN₃O₃: 439.0532. Found: 439.0529.**

1. M. Narasimhulu and Y.R. Lee, *Tetrahedron*, 2011, 67, 9627-9634.

