Supporting Information

Controlled nanogel and macrogel structures from self-

assembly of a stimuli-responsive amphiphilic block copolymer

JianCheng Liu, ^a Christina Uhlir, ^a Parag K Shah, ^a Fang Sun ^{b,c} and Jeffrey W. Stansbury ^{a,d}

^{a.} Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States

^b State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China

^c College of Science, Beijing University of Chemical Technology, Beijing 100029, PR China

^{d.4}Department of Craniofacial Biology, University of Colorado, Aurora, Colorado 80045, United States

Scheme S1. Synthesis of nanogel from self-assembled micelles via CuAAC reaction between azide functionality and propargyl ether.

Scheme S2. Schematic illustration of nanogel inter-particle crosslinking between –OH functionality and HDMI.

Figure S1. SEM image of lyophilized nanogel particles.

рН	40°C	70°C	100°C
4	ng 4	ng 4	ngi
7	ng 7	rg 7	rg 7
10	ng	ng	23

Figure S2. Sample images for the nanogel solutions at different pH and temperatures.