Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting information

In-situ synthesis of carbon fiber-supported SiO_x as anode materials for lithium ion batteries

XuejunBai^b, Biao Wang^{a,b*}, Huaping Wang^{a,b}, Jianming Jiang^b

^a State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua

University, Shanghai 201620, P. R. China.

^b College of Material Science and Engineering, Donghua University, Shanghai 201620, P. R. China.

Tel.: +86 21 67792731; fax: +86 21 67792855.

E-mail address:wbiao2000@dhu.edu.cn

Fig. S1 FESEM images of CF (a) top surface image, and (b) cross-section images.

Fig. S2 FESEM images of SiO_x particles.

Fig.S3 Cycling performances of CF and SiO_x at 250 mA g^{-1} between 0.01 and 2.0 V.

Fig.S4 Galvanostatic voltage profiles of CF-SiO_x-3 at 250 mA g^{-1} between 0.01 and 2.0 V.