Electronic Supplementary Information for:

A facile strategy to fabricate covalently linked raspberrylike nanocomposites with pH and thermo tunable structures

Ruiwei Guo^{ab}, Xing Chen^a, Xiaolei Zhu^c, Anjie Dong^a, Jianhua Zhang^{* ab}

^a Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China

^b Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin

University, Tianjin 300072, China

^c China National Chemical Corporation, Beijing, 100080, China

Corresponding author: Jianhua Zhang

E-mail address: jhuazhang@tju.edu.cn;

Tel.: +862 227 402 364; Fax: +862 227 890 710.

Scheme S1. Schematic illustration of synthesis of BTPT

Figure S1. ¹HNMR spectrum of BTPT

Figure S2. FTIR spectrum of BTPT

Scheme S2. Schematic illustration of synthesis of Tsi-PDMAEMA-PSt

Figure S3. Zeta potential of silica particles in water at different pH values

gure S4. Typical SEM and TEM images of silica@polymer composite particles after

ultrasonication treatment

Figure S5. Photographs of the thermo-triggered aggregation-disaggregation transitions of silica@polymer particles at pH 7.4. Thermoresponsiveness of silica@polymer particles are due to the reversible hydrophilic-hydrophobic transitions of PDMAEMA chains triggered by temperature.

Figure S6. Typical SEM image of silica@polymer particles collected at 48 $^{\circ}$ C