Supplementary data

Enhanced long-term nitrogen removal by organotrophic anammox bacteria under different C/N ratio constrains: quantitative molecular mechanism and microbial community dynamics

Duntao Shu^{a, b[‡]}, Yanling He^{c*}, Hong Yue^{d[‡]}, Junling Gao^e, Qingyi Wang^e, Shucheng Yang^f

^a State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences,

Northwest A&F University, Yangling, Shaanxi 712100, China

^bCenter for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical

Information Engineering of the Ministry of Education, School of Life Science and

Technology, Xi'an Jiaotong University, Shaanxi 710049, China

°School of Human Settlements & Civil Engineering, Xi'an Jiaotong University, Shaanxi

710049, China

^dState Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and

Yangling Branch of China Wheat Improvement Center, Northwest A&F University,

Yangling, Shaanxi 712100, China

eSchool of Chemical Engineering & Technology, Xi'an Jiaotong University, Shaanxi

710049, China

^fSchool of Energy and Power Engineering, Xi'an Jiaotong University, Shaanxi 710049, China

* Corresponding author. Email: heyl@mail.xjtu.edu.cn; Tel/Fax: 0086 029 83395128.

[‡] These authors contributed equally to this work.

Contents

1. Tables

Table S1 Primers used for qPCR thermal programs in this study.

Table S2 Raw and effective reads, plus numbers of OTUs, Good's coverage, Shannon,Chao1, ACE, and Simpson of five phases.

2. Figures

Figure S1 Rarefaction curves base on MiSeq sequencing of bacterial communities in different phases. The OTUs were defined by 3% distances.

Figure S2 Beta diversity for five samples. (a) 3-D PCoA analysis; (b) 2-D PCoA analysis.

Figure S3 Distributions of bacteria in five phases at different taxonomy level. (a) At class level; (b) at order level; (c) at family level; (d) at genus level. Taxa represented occurred at > 0.5% frequency in at least one sample. Others refer to the taxa with their maximum abundance < 0.5% in any sample.

4. References

Target prokaryote Target gene		Sequence (5'-3') of parimer pairs	Annealing	Thermal program	Reference
			(°C)		
Total bacteria	16S rRNA	341F: CCTACGGGAGGCAGCAG	60	5 min at 95°C, 40 cycles of 30 s at 95°C, 30 s at 60°C,	1
		518R: ATTACCGCGGCTGCTGG		and 40 s at 72°C	
Anammox Bacteria	16S rRNA	Amx809f: GCCGTAAACGATGGGCACT	60	10min at 95°C, followed by 35 cycles of 60 s at 95°C, 60 s at 60°C, and 45 s at 72°C	2
		Amx1066r: AACGTCTCACGACACGAGCTG			
AOA	amoA	amoAF: STAATGGTCTGGCTTAGACG	53	3 min at 94°C, followed by 40 cycles of 30 s at 94°C, 1 min at 53°C, and 1 min at72°C	3
		amoAR: GCGGCCATCCATCTGTATGT			
AOB	amoA	amoAF: GGGGTTTCTACTGGTGGT	55	3 min at 94°C, followed by 40 cycles of 30 s at 94°C, 30	4
		amoAR: CCCCTCKGSAAAGCCTTCTTC		s at 55°C, and 45 s at 72°C	
Denitrifying bacteria	nosz	nosZ1F: WCSYTGTTCMTCGACAGCCAG	63	5 min at 95°C, followed by 35 cycles of 60 s at 95°C, 60	5
		nosZ1R: ATGTCGATCARCTGVKCRTTYTC		s at 63°C, and 45 s at 72°C	
Denitrifying bacteria	nirS	nirSnF: TACCACCCCGAGCCGCGCGT	63	5 min at 95°C, followed by 35 cycles of 60 s at 95°C, 60	6
		nirSnr: GCCGCCGTCRTGVAGGAA		s at 63°C, and 45 s at 72°C	
Denitrifying bacteria	nirK	nirKF: ATYGGCGGVAYGGCGA	57	5 min at 95°C, followed by 35 cycles of 60 s at 95°C, 60	6
		nirKR: GCCTCGATCAGRTTRTGG		s at 57°C,and 45 s at 72°C	
Dissimilarity nitrite	narG	narG2F: CTCGAYCTGGTGGTYGA	55	5 min at 95°C, followed by 35 cycles of 60 s at 95°C, 60	7
reducing bacteria		narG2R: TTYTCGTACCAGGTSGC		s at 55°C, and 45 s at 72°C	
Dissimilarity nitrite	napA	napA3F: CCCAATGCTCGCCACTG	60	5 min at 95°C, followed by 35 cycles of 60 s at 95°C, 60	7
reducing bacteria		napA3R: CATGTTKGAGCCCCACAG		s at 60°C, and 45 s at 72°C	
Dissimilarity nitrate	nrfA	nrfA2F: CACGACAGCAAGACTGCCG	60	5 min at 95°C, followed by 35 cycles of 60 s at 95°C, 60	8
reducing bacteria		nrfa2R: CCGGCACTTTCGAGCCC		s at 60°C, and 45 s at 72°C	
Nitrite oxidizing	nxrA	F1norA: CAGACCGACGTGTGCGAAAG	57	Pre-heating at 50 °C for 2 min, pre-denaturation at 95 °C	9

Table S1 Primers used for qPCR and thermal programs in this study.

bacteria		R1norA: TCYACAAGGAACGGAAGGTC		for 10 min, denaturation at 95 °C for 15 s, annealing at		
				57 °C for 30 s, and extension at 72 °C for 30 s		
Methanogen bacteria	mcrA	mcrAme1f: GCMATGCARATHGGWATGTC	54	10 min at 95°C, followed by 35 cycles of 60 s at 95°C,	10	
		mcrame3r: TGTGTGAASCCKACDCCACC		60 s at 60°C, and 45 s at 72°C		
Sulfate reducing	dsrA	dsr1F: ACSCACTGGAAGCACGGCGG	63	10 min at 95°C, followed by 35 cycles of 60 s at 95°C,	11	
bacteria		dsrR: GTGGMRCCGTGCAKRTTGG		60 s at 63°C, and 45 s at 72°C		

Table S2 Raw and effective reads, plus numbers of OTUs, Good's coverage, Shannon,

Sample ID	Raw	Effective	OTUs	Good's	Shannon	Chao 1	ACE	Simpson
	reads	reads		coverage				
phase I	24,789	17,454	1412	0.99	5.68	5273.04	5623.46	0.93
phase II	25,514	17,724	1750	0.99	6.05	6630.98	7130.23	0.95
phase III	29,110	21,586	1112	0.99	5.05	3504.92	3842.40	0.88
phase IV	21,284	15,453	1131	0.99	4.70	3456.78	3789.32	0.86
phase V	21,172	14,505	1181	0.99	5.35	3774.60	4294.51	0.91

Chao1, ACE, and Simpson of five phases.

Figure S1 Rarefaction curves base on MiSeq sequencing of bacterial communities in different phases. The OTUs were defined by 3% distances.

Figure S2 Beta diversity for five samples. (a) 3-D PCoA analysis; (b) 2-D PCoA analysis.

Figure S3d

Figure S3 Distributions of bacteria in five phases at different taxonomy level. (a) At class level; (b) at order level; (c) at family level; (d) at genus level. Taxa represented occurred at > 0.5% frequency in at least one sample. Others refer to the taxa with their maximum abundance < 0.5% in any sample.

References

- Y. Bai, Q. Sun, D. Wen and X. Tang, *FEMS microbiology ecology*, 2012, 8, 323-330.
- 2. I. Tsushima, Y. Ogasawara, T. Kindaichi, H. Satoh and S. Okabe, *Water research*, 2007, **41**, 1623-1634.
- C. A. Francis, K. J. Roberts, J. M. Beman, A. E. Santoro and B. B. Oakley, *Proceedings of the National Academy of Sciences of the United States of America*, 2005, **102**, 14683-14688.
- 4. J.-H. Rotthauwe, K.-P. Witzel and W. Liesack, *Applied and environmental microbiology*, 1997, **63**, 4704-4712.
- 5. S. Henry, D. Bru, B. Stres, S. Hallet and L. Philippot, *Applied and Environmental Microbiology*, 2006, **72**, 5181-5189.
- 6. E. Kandeler, K. Deiglmayr, D. Tscherko, D. Bru and L. Philippot, *Applied and Environmental Microbiology*, 2006, **72**, 5957-5962.
- 7. C. J. Smith, D. B. Nedwell, L. F. Dong and A. M. Osborn, *Applied and environmental microbiology*, 2007, **73**, 3612-3622.
- P. Lam, G. Lavik, M. M. Jensen, J. van de Vossenberg, M. Schmid, D. Woebken,
 D. Gutiérrez, R. Amann, M. S. Jetten and M. M. Kuypers, *Proceedings of the National Academy of Sciences*, 2009, **106**, 4752-4757.
- 9. G. Ji, C. He and Y. Tan, *Ecological Engineering*, 2013, **55**, 35-42.
- L. M. Steinberg and J. M. Regan, *Applied and environmental microbiology*, 2009, **75**, 4435-4442.

 K. Biswas, M. Taylor and S. Turner, *Applied microbiology and biotechnology*, 2014, 98, 7211-7222.