Supporting Information for

Alkali Metal Catalyzed Dehydro-coupling of Boranes and Amines Leading to the Formation of B-N Bond

A. Harinath,^a Srinivas Anga,^a and Tarun K. Panda*^a

Table of Contents

S1.¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of [$\{(CH_3)_2CH\}_2NBpin$] (E) **S2.**¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of [$\{(CH_3)_2CH\}_2NBpin$] (E) **S3.**¹³C NMR spectrum (100 MHz, 25°C, CDCl₃) of [$\{(CH_3)_2CH\}_2NBpin$] (E) S4.¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of $[C_7H_7N(H)Bpin]$ (G) S5.¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of $[C_7H_7N(H)Bpin]$ (G) S6.¹³C NMR spectrum (100 MHz, 25°C, CDCl₃) of $[C_7H_7N(H)Bpin]$ (G) S7.¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of $[C_7H_7N(H)Bpin]$ (I) **S8.**¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of $[C_7H_7N(H)Bpin]$ (I) **S9.**¹³C NMR spectrum (100 MHz, 25°C, CDCl₃) of $[C_7H_7N(H)Bpin]$ (I) S10.¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of $[C_8H_{10}ON(H)Bpin]$ (J) **S11.**¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of $[C_8H_{10}ON(H)Bpin]$ (J) S12.¹³C NMR spectrum (100 MHz, 25°C, CDCl₃) of $[C_8H_{10}ON(H)Bpin]$ (J) S13.¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of $[C_6H_4FN(H)Bpin]$ (K) S14.¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of $[C_6H_4FN(H)Bpin]$ (K) S15.¹³C NMR spectrum (100 MHz, 25°C, CDCl₃) of $[C_6H_4FN(H)Bpin]$ (K) S16.¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of $[C_6H_4NO_2N(H)Bpin]$ (L) S17.¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of $[C_6H_4NO_2N(H)Bpin]$ (L) S18.¹³C NMR spectrum (100 MHz, 25°C, CDCl₃) of $[C_6H_4NO_2N(H)Bpin]$ (L) **S19.**¹H NMR spectrum (400 MHz, 25°C, CDCl₃) $[C_5H_4N_2(H)Bpin]$ (**M**) **S20.**¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of $[C_5H_4N_2(H)Bpin]$ (M)

S21.¹³C NMR spectrum (100 MHz, 25°C, CDCl₃ of [C₅H₄N₂(H)Bpin] (**M**)

S22.¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of [C₈H₆NBpin] (N)
S23.¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of [C₈H₆NBpin] (N)
S24.¹³C NMR spectrum (100 MHz, 25°C, CDCl₃) of [C₈H₆NBpin] (N)
S25.¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of [C₈H₈NBpin] (O)
S26.¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of [C₈H₈NBpin] (O)
S27.¹³C NMR spectrum (100 MHz, 25°C, CDCl₃) of [C₈H₈NBpin] (O)
S28.¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of [C₃H₅N(H)Bpin] (P)
S29.¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of [C₃H₅N(H)Bpin] (P)
S30.¹³C NMR spectrum (100 MHz, 25°C, CDCl₃) of [C₃H₅N(H)Bpin] (P)
S31.¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of [(CH₃CH₂)₂NBR₂] (Q)
S32.¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of [(CH₃CH₂)₂NBR₂] (Q)
S33.¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of [(CH₂)₄NBR₂] (R)
S34.¹¹B NMR spectrum (400 MHz, 25°C, CDCl₃) of [(CH₂)₄NBR₂] (R)
S35.¹H NMR spectrum (128.4 MHz, 25°C, CDCl₃) of [(CH₂)₄NBR₂] (U)
S36.¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of [(CH₂)₄NBR₂] (U)

A1. Experimental section

General: All manipulations of air-sensitive materials were performed with the rigorous exclusion of oxygen and moisture in flame dried Schlenk-type glassware, either on a dual manifold Schlenk line interfaced with a high vacuum (10^{-4} torr) line, or in an argon-filled M. Braun glovebox. The ¹H NMR (400 MHz), ¹¹B{¹H} (128 MHz), ¹³C{¹H} (100 MHz), spectra were recorded on a BRUKER AVANCE III-400 spectrometer. All catalytic substrates amines and boranes were purchased from either Sigma Aldrich or Alfa Aesar. Amines were distilled over CaH₂ prior to use. LiN(SiMe₃)₂, NaN(SiMe₃)₂ and KN(SiMe₃)₂ were purchased from Sigma Aldrich and used as received. CDCl₃ was purchased from Sigma Aldrich.

A2. Typical procedure for CDC reactions: Catalyzed cross-dehydrocoupling (CDC) reactions were carried out by using the following standard protocol. In the glove-box, the pre-catalyst chosen (0.05 mmol) was loaded into a Schleck tube and subsequently the amine ($n \times 0.05$ mmol, n equi) followed by borane ($n \times 0.05$ mmol, n equi) were added to the Schleck tube. The reaction

was stirred in an oil bath at desired temperature (25°C). After the required amount of time, the reaction was quenched by adding CDCl₃ to the reaction mixture. Substrate conversion was monitored by the ¹H NMR spectrum of the reaction mixture, comparing integrations characteristic of the substrates and products. Novel compounds characterized here after.

Product - E

C₆H₁₄NBpin:- ¹H NMR (400 MHz, CDCl₃) δ 3.34 (m, 2H, CH), 1.18 (s, 12H), 1.10 (s, 12H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 80.9 (O attached C), 44.5 (CH), 24.5 (CH₃-C), 23.2 (CH₃-C) ppm. ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ 23.8 ppm.

Product - G

C₇H₇NBpin:- ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.17 (m, 3H, Ar-H), 7.15 - 7.10 (m, 2H, Ar-H) 4.01 (d, 2H, J =7.7 Hz, CH₂), 1.15 (s, 12H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 142.8 (Ar-C), 128.3 (Ar-C), 126.7 (Ar-C) 82.1 (O attached C), 45.2 (CH₃), 24.6 (CH₃-C) ppm. ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ 24.8 ppm.

Product – I

C₇H₇N(H)Bpin:- ¹H NMR (400 MHz, CDCl₃) δ 7.01-6.95 (m, 4H, Ar-H), 4.53 (br, 1H, NH), 2.25 (s, 3H), 1.29 (s, 12H) ppm. ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃) δ 140.6 (N attached Ar-C), 129.4 (Ar-C), 117.5 (Ar-C), 121.3 (Ar-C), 119.3 (Ar-C), 118.9 (Ar-C), 83.6 (O attached C), 24.6 (CH₃-C), 20.5 (CH₃-C) ppm. ${}^{11}B{}^{1}H{}$ NMR (128 MHz, CDCl₃) δ 23.9 ppm.

Product - J

C₈H₉ON(H)Bpin:- ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, 1H, J = 8.4 Hz, Ar-H), 6.71-6.67 (m, 2H, Ar-H), 4.37 (br, 1H, NH), 3.75 (s, 3H), 2.18 (s, 3H), 1.31 (s, 12H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 153.6 (N attached Ar-C), 129.4 (Ar-C), 117.5 (Ar- C), 121.3 (Ar- C), 119.3 (Ar- C), 118.9 (Ar- C), 82.6 (O attached C), 55.5 (O attached C), 24.6 (CH₃-C), 18.1 (CH₃- C) ppm. ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ 24.1 ppm.

Product - K

C₆H₄FN(H)Bpin:- ¹H NMR (400 MHz, CDCl₃) δ 7.61-7.57 (d, 1H, Ar-H), 7.02 - 6.95 (m, 2H, Ar-H), 6.80-6.74 (m, 1H, Ar-H), 4.97 (br, 1H, NH), 1.32 (s, 12H) ppm. ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 153.4 (F attached Ar-C), 151.0 (N attached Ar-C), 131.6 (Ar-C), 124.3 (Ar-C), 119.1 (Ar-C), 114.5 (Ar-C), 83.0 (O attached C), 24.6 (CH₃-C). ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ 24.04 ppm.

Product - L

C₆H₄NO₂N(H)Bpin:- ¹H NMR (400 MHz, CDCl₃) δ 8.05 (br, 1H, NH), 7.93-7.87 (m, 2H, Ar-H), 7.72 (d, 1H, J = 8.4), 7.14 (t, 1H, J = 7.8 Hz, Ar-H), 1.16 (s, 12H, CH₃ – H) ppm . ¹³C{¹H}

NMR (100 MHz, CDCl₃) δ 145.0 (N attached Ar-C), 135.6 (Ar-C), 135.2 (Ar-C), 121.3 (Ar-C), 119.3 (Ar-C), 118.9 (Ar-C), 83.6 (O attached C), 24.5 (CH₃-C) ppm. ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ 24.32 ppm.

Product - M

∽ÓH _B−N-

C₅H₄N₂(H)Bpin:- ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, 1H, J = 3.9 Hz Ar-H), 7.51 - 7.47 (m, 1H, Ar-H), 7.41-7.33 (m, 1H, Ar-H), 6.77-6.72 (m, 1H, Ar-H), 5.76 (br, 1H, NH), 1.29 (s, 12H) ppm.¹³C{¹H} NMR (100 MHz, CDCl₃) δ 156.3 (N attached Ar-C), 147.8 (N attached Ar-C), 137.2 (Ar-C), 111.5 (Ar-C), 108.5 (Ar-C), 83.1 (O attached C), 24.6 (CH₃-C) ppm. ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ 23.99 ppm.

Product - N

C₈**H**₆**NBpin**:- ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, 1H, J = 7.9, C=CH), 7.41 (d, 1H, J = 7.3 Hz), 7.20 (d, 1H, J = 3.2 Hz), 7.06-7.04 (m, 1H, Ar-H), 7.00 - 6.97 (m, 1H, Ar-H), 6.41 (d, 1H, J = 3.3 Hz, C=CH), 1.21 (s, 12H) ppm. ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 135.8 (N attached Ar-C), 135.0 (Ar-C), 134.8 (Ar-C), 133.7 (Ar-C), 131.6 (Ar-C), 130.3 (Ar-C), 130.4 (Ar-C), 127.9 (Ar-C), 127.8 (Ar-C) ppm. ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ 24.5 ppm.

Product - O

C₉**H**₈**N**(**H**)**Bpin**:- ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, 1H, J = 8.1 Hz, C = CH), 7.65 (d, 1H, J = 7.8 Hz), 7.58 (d, 1H, J = 7.5 Hz), 7.38 (d, 1H, J = 7.9 Hz) 7.31 - 7.19 (m, 6H, Ar-H), 6.99 (d, 1H, Ar-H), 2.36 (s, 3H), 1.40 (s, 12H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 139.6 (N attached Ar-C), 136.2 (Ar-C), 131.9 (Ar-C), 126.0 (Ar-C), 122.6 (Ar-C), 120.8 (Ar-C), 118.5 (Ar-C), 114.6 (Ar-C), 110.9 (Ar-C), 84.1 (O attached C), 24.7 (CH₃-C), 9.71 (CH₃-C) ppm. ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ 24.35 ppm.

Product – P

C₃H₅N(H)Bpin:- ¹H NMR (400 MHz, CDCl₃) δ 5.86 - 5.79 (m, 1H, CH) 5.09 - 5.04 (d, J = 1.7, 17.1 Hz, 1H, CH), 4.95 - 4.92 (m, 1H, CH), 3.45 (m, 1H), 3.45 (m, 2H, CH₂), 2.25 (br, 1H, NH), 1.16 (s, 12H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 81.9 (O attached C), 43.4 (CH), 24.5 (CH₃ - C), 24.4 (CH₃-C) ppm. ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ 24.35 ppm.

Product - Q

C₄H₁₀NBR₂: ¹H NMR (400 MHz, CDCl₃) δ 3.05 - 3.00 (q, J = 7.1, 7.0 Hz, 4H, CH₂), 1.83 - 1.57 (m, 5H, CH₂), 1.32 - 1.25 (m, 2H, CH), 0.99 (t, 6H, J = 7.0 Hz, CH₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) 40.4, 30.9, 21.0, 14.5 ppm. ¹¹B{¹H} NMR (128 MHz, CDCl₃): δ 47.7 ppm.

Product - R

N—B<

C₄**H**₈**NBR**₂: ¹H NMR (400 MHz, CDCl₃) δ 3.29 - 3.26 (m, 4H, C*H*₂), 1.89 - 1.63 (m, 14H, C*H*,C*H*₂), 1.37 - 1.36 (m, 4H, C*H*₂), 3.45 (m, 1H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) 44.6, 30.5, 23.7, 21.2 ppm. ¹¹B{¹H} NMR (128 MHz, CDCl₃): δ 48.4 ppm.

Product - U

C₆H₄FN(H)BR₂: ¹H NMR (400 MHz, CDCl₃) δ 7.14-7.08 (m, 1H, Ar-*H*), 7.01 - 6.87 (m, 2H, Ar-*H*), 6.70-6.57 (m, 1H, Ar-*H*), 5.97 (br, 1H, N*H*), 1.90 -1.03 (m, 14H) ppm. ¹¹B{¹H} NMR (128 MHz, CDCl₃): δ 52.8 ppm.

S2.¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of [(CH₃)₂CHNBpin] (E)

S3.¹³C NMR spectrum (100 MHz, 25°C, CDCl₃) of $[(CH_3)_2CHNBpin]$ (E)

S4.¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of [C₇H₇N(H)Bpin] (G)

S5.¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃ of [C₇H₇N(H)Bpin] (G)

S6.¹³C NMR spectrum (100 MHz, 25°C, CDCl₃ of [C₇H₇N(H)Bpin] (G)

S7.¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of $[C_7H_7N(H)Bpin]$ (I)

S8.¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃ of $[C_7H_7N(H)Bpin]$ (I)

S9.¹³C NMR spectrum (100 MHz, 25°C, CDCl₃ of [C₇H₇N(H)Bpin] (I)

S10.¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of [C₈H₁₀ON(H)Bpin](J)

S11.¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃ of $[C_8H_{10}ON(H)Bpin](J)$

S12.¹³C NMR spectrum (100 MHz, 25°C, CDCl₃ of [C₈H₁₀ON(H)Bpin] (**J**)

S13.¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of $[C_6H_4FN(H)Bpin]$ (K)

S14.¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃ of [C₆H₄FN(H)Bpin] (**K**)

S15.¹³C NMR spectrum (100 MHz, 25°C, CDCl₃ of [C₆H₄FN(H)Bpin] (**K**)

S16.¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of [C₆H₄NO₂N(H)Bpin] (L)

S17.¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃ of $[C_6H_4NO_2N(H)Bpin]$ (L)

S18.¹³C NMR spectrum (100 MHz, 25°C, CDCl₃ of [C₆H₄NO₂N(H)Bpin] (L)

S19.¹H NMR spectrum (400 MHz, 25°C, CDCl₃) [C₅H₄N₂(H)Bpin] (**M**)

S20.¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of [C₅H₄N₂(H)Bpin] (**M**)

S21.¹³C NMR spectrum (100 MHz, 25°C, CDCl₃ of [C₅H₄N₂(H)Bpin] (**M**)

S22.¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of [C₈H₆NBpin] (**N**)

S23.¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃ of $[C_8H_6NBpin]$ (N)

S24.¹³C NMR spectrum (100 MHz, 25°C, CDCl₃ of $[C_8H_6NBpin]$ (N)

S25.¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of [C₈H₈NBpin] (**O**)

S26.¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃ of [C₈H₈NBpin] (**O**)

S27.¹³C NMR spectrum (100 MHz, 25°C, CDCl₃ of [C₈H₈NBpin] (**O**)

S28.¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of [C₃H₅N(H)Bpin] (**P**)

S29.¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃ of [C₃H₅N(H)Bpin] (**P**)

S30.¹³C NMR spectrum (100 MHz, 25°C, CDCl₃ of [C₃H₅N(H)Bpin] (**P**)

S31.¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of $[(CH_3)_2NBR_2]$ (**Q**)

S32.¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of [(CH₃)₂NBR₂] (**Q**)

S33.¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of $[(CH_2)_4NBR_2]$ (**R**)

S34.¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of [(CH₂)₄NBR₂] (**R**)

S35.¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of $[C_6H_4FN(H)BR_2]$ (U)

S36.¹¹B NMR spectrum (128.4 MHz, 25°C, CDCl₃) of $[C_6H_4FN(H)BR_2]$ (U)