Supporting Information

Introduction of a novel nano sized N-Sulfonated Brönsted acidic catalyst for the

promotion of the synthesis of polyhydroquinoline derivatives via Hantzsch

condensation under solvent-free conditions

Omid Goli-Jolodar, Farhad Shirini* and Mohadeseh Seddighi

Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, zip code: 41335.

Post Box: 1914, I. R. Iran. Tel./Fax: +98 131 3233262, E-mail address: shirini@guilan.ac.ir

Experimental

Material

Chemicals were purchased from Fluka, Merck, Aldrich and Southern Clay Products Chemical Companies. Yields refer to isolated products. Products were characterized by their physical constants, comparison with authentic samples and FT-IR and NMR spectroscopy. The purity determination of the substrate and reaction monitoring were accomplished by TLC on silics-gel polygram SILG/UV 254 plates.

Instrumentation

The FT-IR spectra were run on a VERTEX 70 Brucker company (Germany). Thermogravimetric analyses (TGA) were performed on TG/DTA6300 SII-Nonotechnology Company (Japan). Samples were heated from 25 to 700 °C at ramp 10 °C/min under N₂ atmosphere. Scanning election microphotographs (SEM) were obtained on a SEM-Philips XL30. Wide-angle X-ray diffraction (XRD) measurements were performed at room temperature on a Siemens D-500 X-ray diffractometer (Germany), using Ni-filtered Co-K α radiation (λ =0.15418 nm). The ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) were run on a Bruker AVANCE^{III}-400 spectrometer in DMSO using TMS as an internal reference (δ in ppm). The surface morphologies were characterized by atomic force microscope (AFM, Ara nanoscope, Iran).

General procedure for the Synthesis of 1,1'-(butane-1,4-diyl)bis(1,4-diazabicyclo[2.2.2]octan-1-ium) chloride ([C₄(DABCO)₂].2Cl):

1,4-Dichlorobutane (0.547 mL, 5.0 mmol) was added to a solution DABCO (1.121 g, 10.0 mmol) in dry CH_3CN (50 mL) and stirred for 4 hr under reflux conditions. After completion of the reaction the solvent was removed under vacuum. The white obtained solid was washed with diethyl ether. After drying at 50 °C 1,1'-(butane-1,4-diyl)bis(1,4-diazabicyclo[2.2.2]octan-1-ium)chloride ([C₄(DABCO)₂].2Cl) was obtained as a white solid in 98.7% yield (1.39 g).

General procedure for the Synthesis of nano sized 4,4'-(butane-1,4-diyl)bis(1-sulfo-1,4-

diazabicyclo[2.2.2]octane-1,4-diium) chloride ([NS-C₄(DABCO-SO₃H)₂].4Cl):

Chlorosulfonic acid (0.66 mL, 10 mmol) was added drop wise to a solution of $C_4(DABCO)_2$.2Cl (1.4 g, 5 mmol) in dry CH_2CI_2 (25 mL) over a period of 30 min in an ice bath. After completion of the addition, the reaction mixture was stirred for 12h at room temperature. The residue was washed with dry diethyl ether (3 × 5 mL) and dried under vacuum to give nano sized 4,4'-(butane-1,4-diyl)bis(1-sulfo-1,4-diazabicyclo[2.2.2]octane-1,4-diium)chloride ([NS-C₄(DABCO-SO₃H)₂)].4Cl) as a white puffy solid in 98.7% yield (4.42 g).

Scheme 1. Synthesis of the NS-[C₄(DABCO-SO₃H)₂].4Cl.

Fig. 1. Potentiometric titration and its first derivative curves of [C₄(DABCO)₂].2Cl with AgNO₃.

Fig. 2. ¹H NMR spectra of $[C_4(DABCO)_2]$.2Cl.

Fig. 3. ¹H NMR spectra of NS-[C₄(DABCO-SO₃H)₂].4Cl.

Fig. 4. ¹³C NMR spectra of NS-[C₄(DABCO-SO₃H)₂].4Cl.

Fig. 7. FT-IR spectra of [C₄(DABCO)₂].2Cl.

Fig. 8. FT-IR spectra of NS- $[C_4(DABCO-SO_3H)_2]$.4Cl (c).

Fig. 9. TGA curves for DABCO, [C₄(DABCO)₂].2Cl and NS-[C₄(DABCO-SO₃H)₂].4Cl.

Fig. 11. SEM micrographs of DABCO.

Fig. 12. SEM micrographs of [C₄(DABCO)₂].2Cl.

Fig. 13. SEM micrographs of NS-[C₄(DABCO-SO₃H)₂].4Cl.

Fig. 15. Atomic force microscopy (AFM) images in two- and three dimensions for [C₄(DABCO-SO₃H)₂].4Cl.

Table 1. XRD data of DABCO (1), [C₄(DABCO)₂].2Cl (2) and NS-[C₄(DABCO-SO₃H)₂].4Cl (3).

Entry	20	Peak width [FWHM] (degree)	Size [nm]
1	19.39	0.157	51.37
2	22.08	0.393	20.52
3	19.4	1.152	7

Fig. 17. The optimized geometry of NS- $[C_4(DABCO-SO_3H)_2].4CI$.

Fig. 18. The optimized geometry of [C₄(DABCO)₂].2Cl.

Fig. 19. Titration and its first derivative curves of NS-[C₄(DABCO-SO₃H)₂].4Cl by NaOH.

General procedure for the Synthesis of polyhydroquinolines:

In a round-bottomed flask a mixture of aldehyde (1 mmol), 1,3-cyclohexanedione and/or dimedone (1 mmol), ammonium acetate (1.5 mmol), a β -ketoester derivative (1 mmol) and [NS-C₄(DABCO-SO₃H)₂)].4Cl was stirred in the different conditions that the best result was obtained in the presence of 5 mol% [NS-C₄(DABCO-SO₃H)₂)].4Cl and 100 °C. After completion of the reaction, as monitored by TLC (eluent: EtOAc:*n*-hexane), water was added to separate the catalyst and the crude product was separated and recrystallized by EtOH.

Table 2. Effect of the catalyst amount and temperature on the reaction between dimedone, 4-

Entry	Catalyst amount (mol%)	Temp. (°C)	Time (min)	Conversion (%) ^a
1	2.5	25	60	60
2	2.5	80	45	75
3	2.5	100	40	80
4	5	25	40	80
5	5	80	30	100
6	5	100	18	100
7	10	100	20	100
8	-	100	6 h	20
9	DABCO (5)	100	6 h	23
10	[C ₄ (DABCO) ₂].2Cl (5)	100	6 h	60

chlorobenzaldehyde, ethyl acetoacetate and ammonium acetate.

^a TLC or GC yields.

Entry	Aldehyde	R'		Product	Time (min)	Yield (%) ^a	M.p. (°C)	
			К.				Found	Reported ref.
1	C ₆ H ₅ -	CH₃	OEt	а	8	98	220-222	224-226 ⁴²
2	2-Cl-C ₆ H ₄ -	CH₃	OEt	b	10	95	202-204	207-209 ⁴²
3	2-OCH ₃ -C ₆ H ₄ -	CH₃	OEt	С	7	98	248-250	257-259 ⁴²
4	2-NO ₂ -C ₆ H ₄ -	CH_3	OEt	d	25	87	200-202	204-206 ⁴²
5	2-CH ₃ -C ₆ H ₄ -	CH_3	OEt	е	4	98	210-212	-
6	$3-Br-C_6H_4-$	CH_3	OEt	f	7	97	229-231	230-232 ⁴³
7	3-CH ₃ O-C ₆ H ₄ -	CH₃	OEt	g	8	97	198-200	201-203 42
8	3-NO ₂ -C ₆ H ₄ -	CH₃	OEt	h	22	90	170-172	173-175 ⁴²
9	4-CI-C ₆ H ₄ -	CH₃	OEt	i	18	92	241-243	245-246 ⁴²
10	4-Br-C ₆ H ₄ -	CH₃	OEt	j	10	97	248-252	255-256 ⁴³
11	4-CH ₃ O-C ₆ H ₄ -	CH₃	OEt	k	15	95	254-256	258-260 ⁴²
12	4-NO ₂ -C ₆ H ₄ -	CH₃	OEt	I	27	87	238-240	242-244 ⁴²
13	4-OH-C ₆ H ₄ -	CH₃	OEt	m	4	98	227-229	228-230 ⁴²
14	4-CH ₃ -C ₆ H ₄ -	CH₃	OEt	n	2	98	259-261	256-258 ⁴²
15	$4-CN-C_{6}H_{4}-$	CH₃	OEt	0	15	90	140-142	140-142 ⁴²
16	$4-CH_{3}S-C_{6}H_{4}-$	CH₃	OEt	р	15	90	239-241	240-242 ⁴⁴
17	4-(CH ₃) ₂ N-C ₆ H ₄ -	CH₃	OEt	q	50	88	231-233	233-235 ⁴²
18	4-Isopro-C ₆ H ₄ -	CH₃	OEt	r	40	85	179-181	182-184 ⁴²
19	C ₆ H ₅ -	н	OEt	s	10	95	250-252	240-242 ⁴⁵
20	$4-CI-C_6H_4-$	н	OEt	t	5	98	243-246	234-236 ⁴⁵
21	4-Br-C ₆ H ₄ -	н	OEt	u	5	98	254-255	253-254 ⁴⁵
22	4-OH-C ₆ H ₄ -	н	OEt	v	3	98	244-246	222-224 ⁴⁵
23	4-CH ₃ O-C ₆ H ₄ -	н	OEt	w	5	98	194-195	192-193 ¹⁷
24	4-CH ₃ -C ₆ H ₄ -	н	OEt	x	12	95	251-254	241-243 ⁴⁵
25	4-(CH ₃) ₂ N-C ₆ H ₄ -	н	OEt	У	50	88	204-206	_
26	4-CI-C ₆ H ₄ -	CH_3	OMe	z	20	89	220-221	220-221 ⁴⁶
27	4-CH ₃ O-C ₆ H ₄ -	CH_3	OMe	аа	5	98	248-252	249-251 ⁴⁶
28	4-CN-C ₆ H ₄ -	CH₃	OMe	bb	5	98	219-221	220-222 ⁴⁶
29	4-CH ₃ -C ₆ H ₄ -	CH₃	OMe	сс	3	98	267-269	274-276 ⁴⁶
30	4-(CH ₃) ₂ N-C ₆ H ₄ -	CH₃	OMe	dd	40	93	258-259	257-258 ¹²
31	Butyraldehyde	CH_3	OEt	ff	45	80	147-149	147-149 ⁴²
32	Isobutyraldehyde	CH_3	OEt	gg	40	80	160-162	161-163 ⁴²
33	Furan-2-carbaldehyde	н	OEt	hh	5	87	207-209	210-212 ¹⁹

Table 3. Synthesis of polyhydroquinoline derivatives from dimedone, aryl aldehydes, β -ketoesters and ammonium acetate catalyzed by NS-[C₄(DABCO-SO₃H)₂].4Cl at 100 °C under solvent-free condition.

34	Furan-2-carbaldehyde	CH_3	OEt	ii	4	87	246-248	245-247 ⁴²
35	СНО	CH_3	OEt	II	15	100	281-282	-
36	онс	Н	OEt	mm	5	85	293-294	_
37	онс	CH ₃	OEt	nn	7	98	305-307	294-296 ⁴³

^a Isolated yields.

The spectral data of the new compounds are as follow:

Ethyl 2,7,7-trimethyl-5-oxo-4-(o-tolyl)-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (e): White solid., m.p. 210-212 °C., FT-IR (KBr, cm⁻¹) : 3302, 3070, 2962, 1698, 1606, 1481, 1377, 1275, 1212, 1065 cm⁻¹., ¹H NMR (DMSO-d6, 400 MHz): 0.8 (S, 3H, CH₃), 1(S, 3H, CH₃), 1.1 (t, *J*=7.2 Hz,3H, CH₃), 1.9 (d, *J*=16 Hz,1H, CH₂), 2.1 (d, *J*=16 Hz,1H, CH₂), 2.27 (d,*J*=17.2 Hz,1H, CH₂), 2.29 (S, 3H), 2.43 (d, *J*=17.2 Hz,1H), 2.62 (S,3H), 3.9-4.00 (m, 2H, OCH₂), 4.93(S, 1H, CH), 6.91-6.96 (m, 2H, ArH), 7 (t, *J*=7.6 Hz,1H, ArH), 7.12(d, *J*=7.6 Hz,1H, ArH), 9.04 (NH,1H).

Fig. 20. FT-IR of ethyl 2,7,7-trimethyl-5-oxo-4-(o-tolyl)-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate.

Fig. 21. H-NMR of ethyl 2,7,7-trimethyl-5-oxo-4-(o-tolyl)-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate.

Ethyl-4-(3-nitrophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (h): Pale yellow., m.p.= 170-172 °C., FT-IR (KBr, cm⁻¹): 3286, 3210, 3081, 2960, 1697, 1613, 1529, 1484, 1354, 1215, 1079, 686., ¹H NMR (400 MHz, CDCl₃) δ 0.949 (s, 3H, CH₃), 1.03 (s, 3H, CH₃), 1.22 (t, *J* =7.2 Hz, 3H, CH₃), 2.144-2.427 (m, 7H), 4.08 (q, *J* =7.2 Hz, 2H, OCH₂), 5.178 (s, 1H, CH), 6.696 (s, 1H, ArH), 7.398 (t, J=8 Hz, 1H, ArH), 7.74 (d, *J* = 8 Hz, 1H, ArH), 8 (d, *J* = 8 Hz, 1H, ArH), 8.141 (s, 1H, NH).

Fig. 22. FT-IR of ethyl-4-(3-nitrophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-

Fig. 23. ¹H NMR of ethyl-4-(3-nitrophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (h).

Ethyl 4-(4-chlorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (i):

White solid., m.p.= 241-243 °C., FT-IR (KBr, cm⁻¹): 3284, 3212, 3075, 2948, 1698, 1611, 1481, 1377, 1227, 1079, 828., ¹H NMR (400 MHz, CDCl₃) δ 0.948 (s, 3H, CH₃), 1.086 (s, 3H, CH₃), 1.219 (t, *J*=7.2 Hz, 3H, CH₃), 2.143-2.345 (m, 4H, CH₂), 2.386 (s, 3H), 4.08 (q, *J* = 7.2 Hz, 2H), 5.047 (s, 1H, CH), 6.5 (br, 1H, NH), 7.18 (d, J= 8.3 Hz, 2H, ArH), 7.28 (d, J = 8.2 Hz, 2H, ArH).

Fig. 24. FT-IR of ethyl 4-(4-chlorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-

Fig. 25. ¹H NMR of ethyl 4-(4-chlorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate.

Ethyl-4-(4-bromophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (j): White solid, m.p.= 248-252 °C., FT-IR (KBr, cm⁻¹): 3277, 3199, 3076, 2966, 1703, 1603, 1490, 1378, 1277, 1217, 1069, 842, 737, 529., ¹H NMR (400 MHz, CDCl₃) δ 0.953 (s, 3H,CH₃), 1.099 (s, 3H, CH₃), 1.219 (t, *J* = 7.2 Hz, 3H, CH₃), 2.152–2.399 (m, 7H), 4.08 (q, *J* = 7.2 Hz, 2H, OCH₂), 5.037 (s, 1H, CH), 6.01 (br, 1H, NH), 7.21 (d, *J* = 8.3 Hz, 2H, ArH), 7.34 (d, *J* = 8.5 Hz, 2H, ArH), 8.23 (s, 1H, NH).

Fig. 26. FT-IR of ethyl-4-(4-bromophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-

Fig. 27. ¹HNMR of ethyl-4-(4-bromophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate.

Ethyl 4-(4-methoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (k): Pale yellow solid, m.p = 254-256 °C., FT-IR (KBr, cm⁻¹) 3278, 3201, 3077, 2959, 1702, 1604, 1498, 1379, 1272, 1223, 1108, 1071, 1030, 841, 760., ¹H NMR (400 MHz, CDCl₃): δ 0.952 (s, 3H, CH₃), 1.073 (s, 3H, CH₃), 1.236 (t, 3H, *J*=7.4 Hz, CH₃), 2.178-2.269 (m, 4H), 2.362 (s, 3H), 3.744 (s, 3H), 4.085 (q, 2H, *J*=7.4 Hz, OCH₂), 5.17 (s, 1H, CH), 6.742-6.764 (d, 2H, *J*=8.8 Hz, ArH), 7.23 (d, 2H, *J*=8.8 Hz, ArH), 7.292 (s, 1H, NH).

Fig. 28. FT-IR of ethyl 4-(4-methoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-

Fig. 29. ¹H NMR of of ethyl 4-(4-methoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate.

Ethyl 2,7,7-trimethyl-4-(4-nitrophenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (l): Pale yellow solid, m.p = 238-240 °C., FT-IR (KBr, cm⁻¹) 3293, 3215, 3082, 2958, 1699, 1619, 1528, 1487, 1379, 1221, 1068, 698., ¹H NMR (400 MHz, CDCl₃): δ 0.920 (s, 3H, CH₃), 1.092 (s, 3H, CH₃), 1.199 (t, 3H, *J*=7.3 Hz, CH₃), 2.15 (dd, 2H, CH₂), 2.26 (dd, 2H, CH₂), 2.402 (s, 6H, CH₃), 4.07 (q, 2H, *J*=7.4 Hz, OCH₂), 5.178 (s, 1H, CH), 6.718 (s, 1H, NH), 7.51 (d, 2H, *J*=9.4 Hz, ArH), 8.09 (d, 2H, *J*=9.4 Hz, ArH).

100

Fig. 30. FT-IR of ethyl 2,7,7-trimethyl-4-(4-nitrophenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-

Fig. 31. ¹H NMR of ethyl 2,7,7-trimethyl-4-(4-nitrophenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate.

Ethyl 4-(4-isopropylphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (r): White solid, m.p = 179-181 °C.; FT-IR (KBr, cm⁻¹) 3283, 3206, 3082, 2963, 1703, 1606, 1494, 1379, 1279, 1213, 843., ¹H NMR (400 MHz, CDCl₃): δ 0.983 (s, 3H, CH₃), 1.091 (s, 3H, CH₃), 1.192-1.282 (m, 9H), 2.163 (m, 6H), 2.79 (m, 1H, CH), 4.08 (q, 2H, *J*=7.4 Hz, OCH₂), 5.048 (s, 1H, CH), 6.766 (s, 1H, NH), 7.06 (d, 2H, *J*=8 Hz, ArH), 7.22 (d, 2H, *J*=8 Hz, ArH).

Fig. 32. FT-IR of ethyl 4-(4-isopropylphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-

Fig. 33. ¹H NMR of ethyl 4-(4-isopropylphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate.

Ethyl 4-(4-chlorophenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (t): White solid, m.p.= 243-246 °C., FT-IR (KBr, cm⁻¹): 3278, 3199, 3077, 2967, 1705, 1603, 1491, 1379, 1278, 1216, 1154, 1076, 843, 739., ¹H NMR (400 MHz, CDCl₃): δ 1.20 (t, *J* = 7.2 Hz, 3H), 1.644 (s, 1H), 1.944-2.053 (m, 2H), 2.330-2.482 (m, 7H), 4.08 (q, *J* = 7.2 Hz, 2H), 5.087 (s, 1H, CH), 6.013 (br, 1H, NH), 7.19 (d, *J* = 8 Hz, 2H, ArH).

Fig. 34. FT-IR of ethyl 4-(4-chlorophenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate.

Fig. 35. ¹H NMR of ethyl 4-(4-chlorophenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate.

Methyl 4-(4-bromophenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (u): White solid, m.p.= 254-255 °C., FT-IR (KBr, cm⁻¹): 3338, 3248, 3094, 2948, 1699, 1648, 1485, 1309, 1214, 834., ¹H NMR (400 MHz, CDCl₃): δ 1.924-2.042 (m, 2H), 2.3-2.38 (m, 2H), 2.393-2.454 (m, 5H), 3.634 (s, 3H, OCH₃), 5.085 (s, 1H, CH), 6.286 (s, 1H, NH), 7.19 (d, 2H, *J*=9.4 Hz, ArH), 7.34 (d, 2H, *J*=9.4 Hz, ArH)., ¹³C NMR (100 MHz, CDCl₃): δ 195.86, 167.70, 149.95, 146.03, 144.03, 131.11, 129.69, 119.90, 113.03, 105.23, 51.17, 36.99, 35.91, 27.41, 21.0, 19.46.

Fig. 36. FT-IR of methyl 4-(4-bromophenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-

Fig. 37. ¹H NMR of methyl 4-(4-bromophenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3carboxylate.

Ethyl 4-(4-methoxyphenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (w): Pale yellow solid, m.p.= 194-195 °C., FT-IR (KBr, cm⁻¹): 3275, 3187, 3068, 2963, 1705, 1606, 1498, 1381, 1213, 1025, 843., ¹H NMR (400 MHz, CDCl₃): δ 1.24 (t, *J* = 7.2 Hz, 3H), 1.91-2.02 (m, 2H), 2.29-2.42 (m, 7H), 3.75 (s, 3H), 4.08 (q, J = 7.2 Hz, 2H), 5.06 (s, 1H), 6.74-6.78 (m, 3H), 7.24 (d, J = 8.8 Hz, 2H, Ar-H).

Fig. 38. FT-IR of ethyl 4-(4-methoxyphenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-

Fig. 39. ¹H NMR of ethyl 4-(4-methoxyphenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate.

Ethyl 4-(4-(dimethylamino)phenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-

carboxylate (y): Brown solid., m.p. = 204-206 °C., FT-IR (KBr, cm⁻¹): 3277, 3203, 3078, 2951, 1694, 1607, 1490, 1378, 1217, 772., ¹H NMR (400 MHz, CDCl₃): δ 0.978 (s, 3H), 1.091 (s, 3H), 2.167-2.344 (m, 4H), 2.393 (s, 3H, OCH₃), 2.9 (s, 6H, NCH3), 4.966 (s, 1H, CH), 6.093 (br, 1H, NH), 6.64 (d, *J* = 8 Hz, 2H, ArH), 7.18 (d, *J* = 8 Hz, 2H, ArH).

Fig. 40. FT-IR of ethyl 4-(4-(dimethylamino)phenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-

hexahydroquinoline-3-carboxylate.

Fig. 41. ¹H NMR of ethyl 4-(4-(dimethylamino)phenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8hexahydroquinoline-3-carboxylate.

Methyl-4-(4-chlorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (z): Yellow solid., m.p. = 220-221 °C., FT-IR (KBr, cm⁻¹): 3287, 3201, 3076, 2958, 1685, 1605, 1409, 1383, 1335, 1227, 1008, 841., ¹H NMR (400 MHz, DMSO-d6) δ 0.948 (s, 3H, CH₃), 1.102 (s, 3H, CH₃), 2.243-2.412 (m, 3H, CH₃), 3.636 (s, 3H, OCH₃), 5.062 (s, 1H, CH), 6.06 (br, 1H, NH), 7.18 (d, *J*= 8.6 Hz, 2H, ArH), 7.28 (d, *J* = 8.4 Hz, 2H, ArH).

Fig. 42. FT-IR of methyl-4-(4-chlorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-

Fig. 43. ¹H NMR of methyl-4-(4-chlorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate.

Ethyl 4-(4-(dimethylamino)phenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (dd): Yellow solid, m.p. = 258-259 °C., FT-IR (KBr, cm⁻¹): 3297, 3208, 3072, 2961, 2776, 1699, 1608, 1485, 1377, 1213, 749., ¹H NMR (400 MHz, CDCl₃): δ 1.24 (t, *J* = 7.2Hz, 3H), 1.98 (m, 2H), 2.35-2.42 (m, 7H), 2.89 (s, 6H), 4.09 (q, *J* = 7.2 Hz, 2H), 5.02 (s, 1H), 6.45 (s, 1H, NH), 6.62 (d, *J* = 8.8 Hz, 2H, Ar–H),7.18 (d, *J* = 8.8 Hz, 2H, Ar–H)., ¹³C NMR (100 MHz, CDCl₃): δ 196.08, 167.77, 149.83, 149.02, 143.05, 135.95, 128.6, 113.63, 112.36, 106.38, 59.77, 40.78, 37.14, 35.17, 27.37, 21.11, 19.34, 14.3.

Fig. 44. FT-IR of ethyl 4-(4-(dimethylamino)phenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-

Fig. 45. ¹H NMR of ethyl 4-(4-(dimethylamino)phenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate.

Ethyl 4-(furan-2-yl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (hh): brown solid, m.p = 207-209., FT-IR (KBr, cm⁻¹): 3302, 3070, 2962, 1696, 1606, 1481, 1377, 1275, 1212, 1158, 1108, 1065, 748., ¹H NMR (CDCl₃, 400 MHz) δ 1.26 (t, 3H, *J*=7.2 Hz), 2.01-2.059 (m, 2H), 2.363-2.397 (m, 6H), 2.465-2.487 (m, 3H), 4.11-4.21 (m, 2H, OCH₂), 5.3 (s, 1H, CH), 6.01-6.018 (m, 1H, ArH), 6.14–6.23 (m, 2H, ArH), 7.22 (s, 1H, NH).

Fig. 46. FT-IR of ethyl 4-(furan-2-yl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate.

Fig. 47. ¹H NMR of ethyl 4-(furan-2-yl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate.

Ethyl 4-(furan-2-yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (ii): brown solid, m.p = 246-248 °C., FT-IR (KBr, cm⁻¹): 3286, 3211, 3078, 1690, 1614, 1485, 1378, 1285, 1220, 1155, 1079, 752., ¹H NMR (400 MHz, CDCl₃): δ 1.047 (s, 3H, CH₃), 1.125 (s, 3H, CH₃), 1.28 (t, 3H, *J*=7.4 Hz, CH₃), 2.28 (m, 2H, CH₂), 2.32-2.41 (m, 5H), 4.17 (q, 2H, *J*=7.3 Hz, OCH₂), 5.27 (s, 1H, CH), 5.99-6.04 (m, 2H, ArH), 6.22 (m, 1H, ArH), 7.21 (s, 1H, NH).

Fig. 48. FT-IR of ethyl 4-(furan-2-yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate.

Fig. 49. ¹H NMR of ethyl 4-(furan-2-yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate.

Diethyl 4,4'-(1,3-phenylene)bis(2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate) (II): White solid, m.p. = 281-282 °C., FT-IR (KBr, cm⁻¹): 3295, 3214, 3079, 2959, 1692, 1614, 1489, 1379, 1218 cm⁻¹., ¹H NMR (DMSO, 400 MHz) δ 0.8 (s, 3H, CH₃), 0.84 (s, 3H, CH₃), 1.006 (s, 3H, CH₃), 1.015 (s, 3H, CH₃), 1.07 (t, *J*=7.2 Hz, 3H,CH₃), 1.17 (t, *J*=7.2 Hz, 3H, CH₃), 1.90-1.99 (m, 2H), 2.13-2.20 (m, 2H), 2.26-2.31 (8H, 2CH₃ and CH₂), 2.36-244 (m, 2H), 3.9-4.1 (m, 4H, 2CH₂), 4.77 (s, 1H, CH), 4.83(s, 1H, CH), 6.81-7 (m, 3H, ArH), 7 (s,1H, ArH), 9.00 (s, 1H, NH), 9.03(s, 1H, NH).

Fig. 50. FT-IR of diethyl 4,4'-(1,3-phenylene)bis(2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-

Fig. 51. ¹H NMR of diethyl 4,4'-(1,3-phenylene)bis(2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate).

Diethyl 4,4'-(1,4-phenylene)bis(2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate) (mm): White solid; m.p. 293-294 °C; FT-IR (KBr): v = 3289, 3211, 3077, 2946, 1692, 1613, 1484, 1379, 1226, 1184 cm⁻¹., ¹H NMR (DMSO, 400 MHz): δ = 1.14 (t, 6H, 2CH₃), 1.79-1.81 (m, 4H, 2CH₂), 1.88-1.91 (m, 4H, 2CH₂), 2.17-2.21 (m, 4H, 2CH₂), 2.24 (s, 6H, 2CH₃), 3.9-4.02 (m, 4H, 2CH₂), 4.8 (s, 2H, CH), 6.95 (s, 4H, ArH), 9.15 (s, 1H, NH), 9.24 (s, 1H, NH).

Fig. 52. FT-IR of diethyl 4,4'-(1,4-phenylene)bis(2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-

Fig. 53. ¹H NMR of diethyl 4,4'-(1,4-phenylene)bis(2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate).