Electronic supplementary information

Ion mediated Charge Carrier Transport in a Novel Radiation Sensitive Polyoxometalate-Polymer Hybrid

Abdus Salam Sarkar, Vishwanath Kalyani, Kenneth E. Gonsalves, Chullikkattil P. Pradeep and Suman Kalyan Pal*

School of Basic Sciences, Indian Institute of Technology Mandi, Mandi-175001, Himachal Pradesh, India.

*Corresponding Author: Tel.: +91 1905 267040; Fax: +91 1905 237924

E-mail: suman@iitmandi.ac.in

Materials and Measurements

Indium tin oxide (ITO) coated glass slides and aluminum (99.999%) were purchased from Sigma-Aldrich, USA. Hybrid polymer (POM-MAPDST) was synthesized and characterized following our previous report.¹ Phosphate buffer solution (PBS) and hydrochloric acid (HCL) were procured from Alfa Aesar, USA and Merck, India, respectively. Before device fabrication, ITO coated glass slides with a sheet resistivity of 8-12 Ω/\Box were first patterned via chemical etching and then cleaned through ultra-sonication in DI water, acetone, and isopropyl alcohol. POM-MAPDST hybrid polymer (0.8 wt %) solution in acetonitrile was spin coated on ITO

coated glass substrates with a spinning rate of 5000 rpm for 60 s to achieve a thickness of about 70 nm. Finally, a 100 nm thick aluminum (Al) electrode was deposited via thermal evaporation under the chamber pressure of 1×10^{-6} mbar using a shadow mask. Film thicknesses were measured using NanoMap-LS stylus profilometer (Aep Technology, USA). Temperature dependent current-voltage (I-V) measurements were performed in a laboratory-made variable temperature cryostat using a programmable source meter (Keithley 2400). Electrochemical (LSV and EIS) measurements were performed on an electrochemical workstation (AutolabMetrohm). A conventional three electrode cell was used for all measurements, where POM-MAPDST or MAPDST coated ITO was used as a working, Ag/AgCl as a reference and Pt as a counter electrode. Solution pH was varied by changing the pH of 0.1M phosphate buffer solution with adding the appropriate amount of hydrochloric acid.

ITO	POM-MAPDST	AI
	2.94 eV	
		4.3 eV
4.7 eV	4.99 eV	

Fig. S1 Energy level alignment of ITO, POM-MAPDST and Al in the fabricated devices.

Fig. S2 Symmetric current density-voltage (J-V) characteristic of POM-MAPDST films at different temperatures.

Fig. S3 Current density versus voltage (J-V) plots for POM-polymer hybrid films in log-log scale in the temperature range 302-213 K.

Fig. S4 Variation of current with pH for the POM-MAPDST working electrode at particular voltages.

Fig. S5 Linear sweep voltammograms of MAPDST at different pH values.

(a)

(b)

Fig. S6 (a) AFM and (b) 3D optical images of ITO/POM-MAPDST electrode surface.

(a)

(b)

Fig. S7 (a) AFM and (b) 3D optical images of ITO/MAPDST electrode surface.

pH value	$R_{s}(\Omega)$	CPE (F)	$R_{ct}(K\Omega)$	Z _w
7	72.8	23.4	0.729	12.5 mMho
4	74.2	36.5	1.43	1.65 mMho
2	94.9	78.4	7.42	1.10 TMho
1	133	34.7	5.76	428 uMho

 Table 1: The parameters obtained from the fitting of impedance spectra using an equivalent circuit

¹ V. Kalyani, V. Satyanarayana, A. S. Sarkar, A. Kumar, S. K. Pal, S. Ghosh, K. E.

Gonsalves, and C. P. Pradeep, RSC Adv. 5, 36727-36731 (2015).