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Table S1 Critical micelle concentrations of DDCN in aqueous NaNO3 

solutions determined at 25 C from surface tension, conductance and uv-

visible spectral methods

cmc (±3%) / mmol kg-1

UV-visible spectroscopy[NaNO3] / 

mol kg-1

Surface 

tension

Conductance

At 360 nm At 510 nm

0 0.367 0.376 0.358 0.357

0.001 0.344 0.354 0.338 0.337

0.002 0.324 0.323 0.326 0.325

0.005 0.290 0.290 0.287 0.287

0.010 0.260 0.262 0.253 0.253

0.020 0.233 0.238 0.224 0.224

0.030 0.207 0.213 0.195 0.197

0.040 0.183 0.194 0.180 0.180

0.050 0.17 0.173 0.166 0.165

0.070 0.146 - 0.138 0.137

0.100 0.127 - 0.122 0.120

0.150 0.108 - 0.104 0.104

0.200 0.098 - 0.088 0.088



Table S2  Values of hydrodynamic diameters (dH) and 

polydispersity index (PDI) of DDCN (concentration = 

0.50 mM) aggregates in aqueous NaNO3 solution. 

[NaNO3] / M dH / nm PdI

0 116.3 0.228

0.002 131.0 0.275

0.005 147.4 0.247

0.010 161.7 0.259

0.020 202.3 0.173

0.030 219.3 0.191

0.050 216.2 0.219

0.070 225.4 0.169

0.100 236.4 0.249

0.200 276.3 0.257

0.300 269.9 0.231

0.400 316.4 0.278



Appendix S1

Small Angle Neutron Scattering (SANS) Measurement

The SANS is a neutron diffraction technique which involves scattering of a beam of neutrons 

from the sample and measuring the scattered neutron intensity as a function of the scattering 

angle. The wave vector transfer Q values (Q = 4πsinθ/λ, 2θ is the scattering angle and λ is the 

wavelength of the neutron beam) in these measurements are very small, typically in the range 

of 0.001 to 1.0 Å and the wavelength of the neutron used is usually 4-10 Å. The SANS 

experiments determine the differential cross-section dΣ/dΩ since it contains all the 

information on the shape, size, and interactions of the scattering bodies in the samples. It is 

found that the scattering cross-section from a collection of particles consists of two terms, 

intra-particle and inter-particle scattering. The differential cross-section is given by
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where n is the number density of the particles, P(Q) is intra-particle structure factor (square 

of the form factor) and S(Q) is inter-particle structure factor. B is a constant term denoting 

incoherent background from the sample. 

The relevant equations for the form factor for different shapes are given as follows:

(1) For Sphere of radius R
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where ρp and ρs are scattering length densities of particles and solvent, respectively.

(2) For prolate ellipsoidal micelles 
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a and b are respectively the semimajor and semiminor axes of the ellipsoid. The term    in 

the above equations refers to the cosine of the angle between the directions of a and Q.

(3) For vesicles having inner radius R and thickness dR
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(4) For rod-like structure of radius R and length 2l (thickness of disc)
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where J1 is the Bessel function of order unity and β is the angle between the axis of the 

cylinder and bisectrix.

For disc-like structure also above equation is used with very large R and small l. 

(5) For micellar clusters
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where C is a constant proportional to the specific surface area of surface fractals. The first 

term is power law behaviour accounting for scattering from large aggregate and the second 

term is scattering from the particles within the aggregates. If  is in between 3 to 4, it 

indicates the surface fractal nature of the aggregates.



(6) For worm-like micelle

The form factor for a worm-like micelle can be given by a product of form factors 

corresponding to that for flexible cylinders with a circular cross section and rigid rod related 

to Kuhn length (l).
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The expression for S(Q) is given by the Fourier transform of the radial distribution 

function g(r). The g(r) gives the probability of finding the centre of another micelle at a 

distance r from the centre of a reference micelle. S(Q) is calculated using the mean spherical 

approximation. In this approximation, the micelle is treated as a rigid equivalent sphere of 



diameter d = 2(ab2)1/3 interacting with another micelle through a screened coulomb potential 

u(r) given by the relation
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where u0 is the potential at r = d and the Debye-Hückel inverse screening length  is 

evaluated by using the expression
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In the above equation, NA, e,, kB and T denote Avogadro number, electronic charge, 

dielectric constant of the solvent, Boltzmann constant and absolute temperature, respectively.



Appendix S2

Surface excess calculation

A general expression for evaluating surface excess (Г) of an ionic surfactant in the presence 

of an added electrolyte contributing the same counterion as that of the surfactant molecule is 

derived here using mainly the method of Prosser and Franses (Colloids Surf. A, 2001, 178, 

1−40) and by accounting for the activity coefficient. We represent the cationic 

metallosurfactant by Sn+Yn and the electrolyte by Xm+Ym. The complete dissociation of 

Sn+Yn and Xm+Ym in the submicellar concentration region provides the following ionic 

species in the solution.

    Sn+Yn  n+Sz+ + nYz                               (A2.1)

    Xm+Ym  m+Xze+ + mYz                         (A2.2)

Based on the Gibbs adsorption isotherm, the thermodynamic relation for the change in 

surface tension (d) of the solution containing metallosurfactant and electrolyte can be 

written as

                                                         (A2.3)]dlnaΓdlnaΓdlnaRT[Γdγ XXYYSS 

The  and ai terms refer to the surface excess and activity of the ionic species ‘i’, iΓ

respectively. In the present study, surface tension of metallosurfactant solution was measured 

by keeping electrolyte concentration constant, hence = 0. Moreover, the surface excess Xdlna

of the coion Xze+ is generally considered to be negligible and hence  = 0. Therefore, eqn XΓ

(A2.3) reduces to the form

                                                                          (A2.4)]dlnaΓdlnaRT[Γdγ YYSS 



Eqn (A2.4) can be separated into concentration (ci) and activity coefficient (fi) containing 

terms as
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Using the Debye-Hückel (DH) limiting law , eqn (A2.5) can be brought to 1/22
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In the DH limiting law, the value of Ad = 1.17 and I is the ionic strength of the solution. 

While arriving at eqn (A2.6) from eqn (A2.5), the relations used are , , ΓnΓS  ΓβΓ aY 

,  and . The term  is actually equal to the surface cncS  eY cmcnc     znzn Γ

excess of the metallosurfactant expressed in moles of surfactant per unit area and c is the 

concentration of the surfactant. The value of may lie in the range 0 < ≤ . Generally, aβ aβ n

is assigned a value such that the double layer is electrically neutral and for that in the aβ

present case = . If the double layer does not contain any counterion, then = 0, which aβ n aβ

is an unrealistic situation. From eqn (A2.6) we finally get an equation of the form
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The term n represents several quantities as shown in eqn (A2.8).  
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