Supporting information:

Mesoporous Ni₃N/NiO composite with core-shell structure for room temperature, selective and sensitive NO₂ gas sensing

Mingming Zou,^a Hu Meng,^b Fengdong Qu,^a Liang Feng^{b,*} and Minghui Yang^{a,*}

^a Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China

^b Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China

Table 1. Summary of the different sample (precursor - $Ni(HCO_3)_2$ or $Ni(OH)_2$) with different Urea:Ni mol ratio, Solvothermal or Hydrothermal temperature, Reaction time and Solution.

Sample	Urea:Ni mol	Solution	Temperature	Reaction	Products
	ratio			time	
а	2:1	50 ml H_2O and 30 ml	100 °C	18 h	Ni(OH) ₂
b	5:1	$50 \text{ ml H}_2\text{O} \text{ and } 30 \text{ ml}$	100 °C	18 h	Ni(OH) ₂
c	2:1	$50 \text{ ml H}_2\text{O} \text{ and } 30 \text{ ml}$	160 °C	4 h	Ni(OH) ₂
d	5:1	$50 \text{ ml H}_2\text{O} \text{ and } 30 \text{ ml}$	160 °C	4 h	Ni(OH) ₂
e	2:1	80 ml H ₂ O	160 °C	18 h	Ni(OH) ₂
f	5:1	80 ml H ₂ O	160 °C	18 h	Ni(HCO ₃) ₂
g	2:1	$50 \text{ ml H}_2\text{O} \text{ and } 30 \text{ ml}$	160 °C	18 h	Ni(OH) ₂
h	5:1	$50 \mbox{ ml } H_2O$ and $30 \mbox{ ml}$	160 °C	18 h	Ni(HCO ₃) ₂

Figure S2. XRD patterns of Ni(OH)₂ (sample a-e and g listed in table1).

Figure S4. Refinement of PXRD of Ni₃N composite.

Figure S5. SEM images of $Ni(OH)_2$ sample a-e and g (corresponded to images a-h) and $Ni(HCO_3)_2$ sample f and h (corresponded to images f and h) listed in table1.

Figure S6. The self-life of Ni_3N/NiO -based sensor for 2 ppm NO_2 sensing at room temperature for two weeks.

Figure S7. The room temperature sensing properties for Ni₃N, NiO, and Ni₃N/NiO mixturebased sensors to 2 ppm NO₂.

