
†Electronic Supplementary Information (ESI)

 Eu^{3+} doped α -sodium gadolinium fluoride luminomagnetic nanophosphor as a bimodal nanoprobe for high-contrast *in vitro* bioimaging and external magnetic field tracking applications

Satbir Singh^{ab}, Pawan Kumar^{ab}, Benny Abraham Kaipparettu *cd, Bipin Kumar Gupta*b *Corresponding authors E-mail: kaippare@bcm.edu (B.A. Kaipparettu),bipinbhu@yahoo.com (B.K.G.)

Fig. S1 The EDAX spectrum of α -NaGd_{0.88}F₄:Eu_{0.12}³⁺ nanophosphor, which indicates the presence of the Na, Gd, Eu and F elements in nanophosphor.

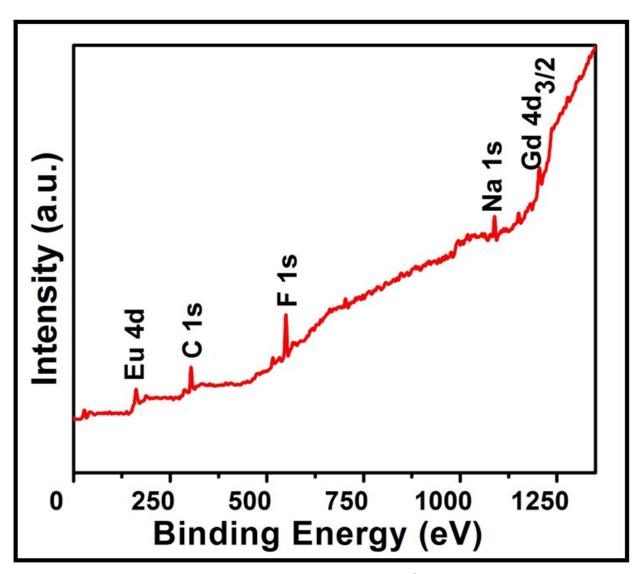
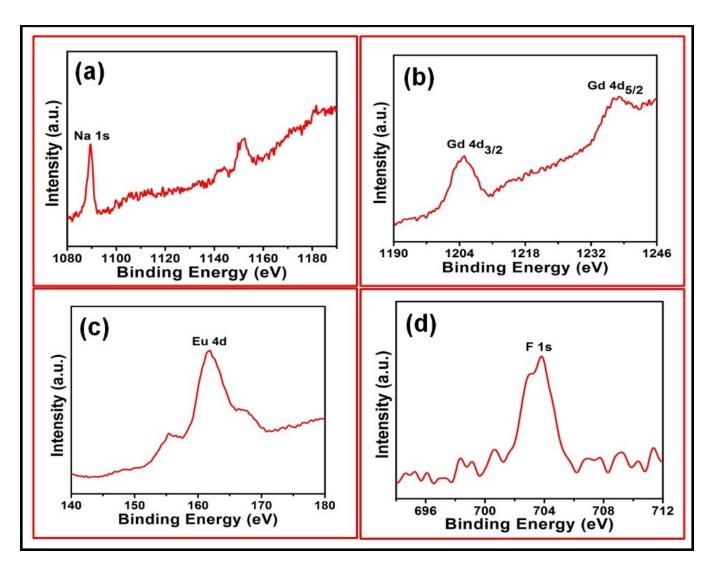
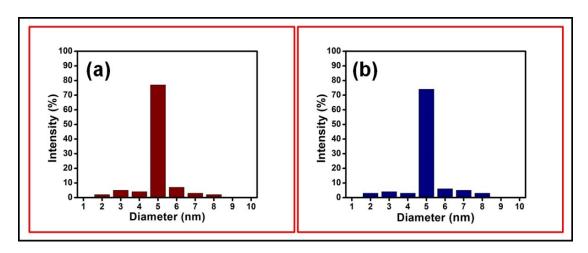
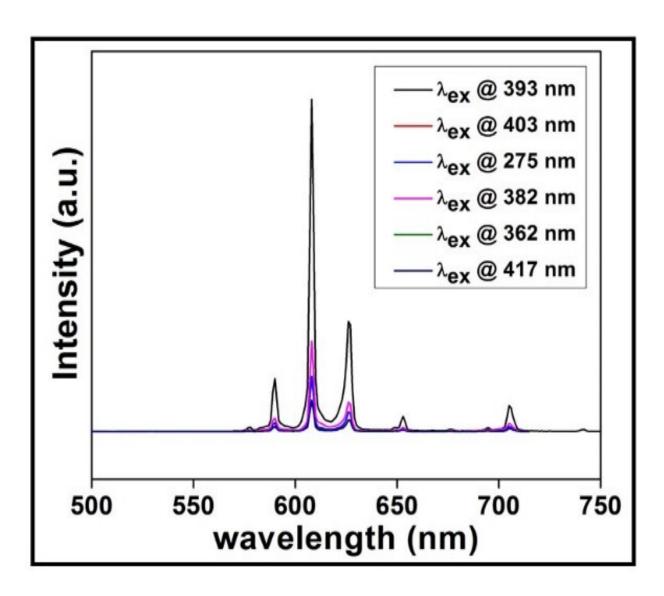
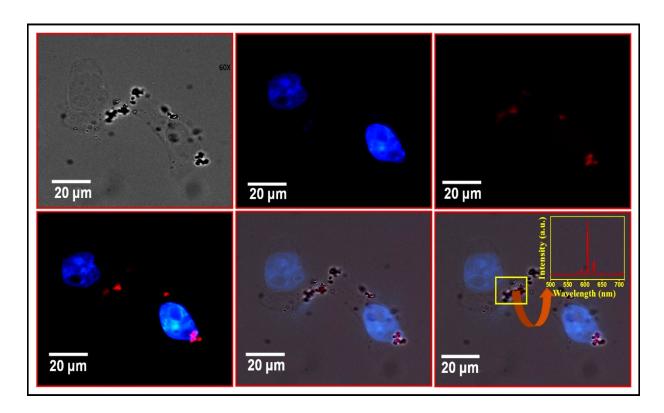


Fig. S2 XPS survey scan spectrum of α -NaGd_{0.88}F₄:Eu_{0.12}³⁺ nanophosphor.


Fig. S3 Core level spectra of α -NaGd $_{0.88}$ F $_4$:Eu $_{0.12}$ ³⁺ nanophosphor (a) Na, (b) Gd, (c) Eu and (d) F.

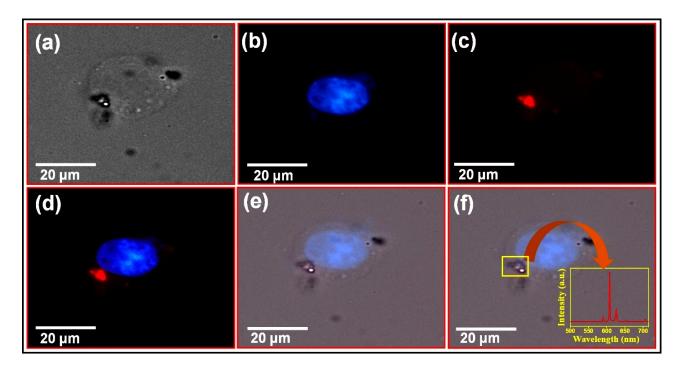

Fig. S4 Size distribution plots obtained from DLS studies for α-NaGd_{0.88} F_4 :Eu_{0.12}³⁺ nanophosphor dispersed in (a) ethanol and (b) DI water.

Fig. S5 PL emission spectra of α -NaGd_{0.88}F₄:Eu_{0.12}³⁺ nanophosphor under different excitation wavelengths.

Fig. S6 *In vitro* fluorescent microscopic images of HeLa cells, incubated with α-NaGd_{0.88}F₄:Eu_{0.12}³⁺ nanophosphor. Sequential images show; (a) phase contrast picture of HeLa cells, (b) individual nucleus stained blue with DAPI, (c) red fluorescence staining by α-NaGd_{0.88}F₄:Eu_{0.12}³⁺ nanophosphor, (d) overlapped image from blue DAPI and red α-NaGd_{0.88}F₄:Eu_{0.12}³⁺ nanophosphor images , (e) overlap of phase contrast, blue and red from (a), (b) and (c) images respectively, (f) *in vitro* localized PL image of α-NaGd_{0.88}F₄:Eu_{0.12}³⁺ nanophosphor from (e). Inset of (f) shows the localized PL taken from α-NaGd_{0.88}F₄:Eu_{0.12}³⁺ nanophosphor labelled HeLa cells (red).

Fig. S7 *In vitro* fluorescent microscopic images of HeLa cells, incubated with α-NaGd_{0.88}F₄:Eu_{0.12}³⁺ nanophosphor. Sequential images show; (a) phase contrast picture of HeLa cells, (b) individual nucleus stained blue with DAPI, (c) red fluorescence staining by α-NaGd_{0.88}F₄:Eu_{0.12}³⁺ nanophosphor, (d) overlapped image from blue DAPI and red α-NaGd_{0.88}F₄:Eu_{0.12}³⁺ nanophosphor images , (e) overlap of phase contrast, blue and red from (a), (b) and (c) images respectively, (f) *in vitro* localized PL image of α-NaGd_{0.88}F₄:Eu_{0.12}³⁺ nanophosphor from (e). Inset of (f) shows the localized PL taken from α-NaGd_{0.88}F₄:Eu_{0.12}³⁺ nanophosphor labelled HeLa cells (red).