Supporting Information

High performance organic photovoltaic utilizing PEDOT:PSS and graphene oxide

H. P. Kim, S. J. Lee, A. R. B. M. Yusoff*, J. Jang

Experimental Section

Anode Interfacial Layer Solutions Preparation. PEDOT:PSS (CLEVIOS P VP Al 4083) was purchased from H. C. Starck and used without any further purification. PEDOT:PSS:WO_x, PEDOT:PSS:MoO_x, PEDOT:PSS:GO, PEDOT:PSS:CNT solutions were prepared by mixing PEDOT:PSS with their respective materials in 1:1, 1:1, 20:1, and 20:1 volume ratio, respectively. Prior to the film deposition, the prepared solutions were filtered through a 0.45 μ m hydrophilic filter.

Solar Cell Fabrication. The ITO glass substrate was cleaned by ultrasonic treatment in acetone, methanol, isopropanol, and deionized water sequentially. The pre-cleaned ITO substrate was treated in an ultraviolet-ozone chamber (Ultraviolet Ozone Cleaner, Jetlight Company, USA) for 15 min. All anode interfacial layers (PEDOT:PSS, PEDOT:PSS:WO_x, PEDOT:PSS:MoO_x, PEDOT:PSS:GO, and PEDOT:PSS:CNT) were deposited at 4000 rpm for 25 s on the ITO electrode. The interfacial layer was the annealed inside the glove box at 130 °C for 20 min. Later, the photoactive layer was prepared by spin coating (500 rpm) a 1,2-dichlorobenzene solution of PTB7 and a fullerene (PC₇₁BM) (1:1.5 w/w, polymer concentration 12 mg/2mL⁻¹) on the anode interfacial layer for 25 s. The thickness of the active layer was around 90 nm. For the PBDTTT-EFT:PC₇₁BM OPVs, the active layer was spin-coated at 500 rpm for 60 s (1:1.5 w/w, polymer concentration 15 mg/mL) on the anode interfacial layer. The thickness of PBDTTT-EFT:PC₇₁BM was approximately 95 nm. Later, PFN solution was filtered through

a 0.45 μ m polyvinylidene fluoride (PVDF) filter and spin-coated at 4000 rpm for 25 s on the photoactive layer. The thickness of the PFN was < 5 nm. Finally, the substrate was transferred to a vacuum chamber and 100 nm of Al was thermally deposited on the PFN cathode buffer layer under a base pressure of 1 x 10⁻⁷ Torr. The active area of the device was 0.04 cm².

Solar Cell Measurements. The power conversion efficiencies of the OPVs were measured under the illumination of AM1.5G simulated solar light (Oriel Model 91192) at 100 mW/cm². The current density–voltage (J–V) characteristics were recorded with a Keithley 2410 source unit. The EQE measurements were performed using EQE system (Model 74000) obtained from Newport Oriel Instruments USA and HAMAMATSU calibrated silicon cell photodiode used as a reference diode. The wavelength was controlled with a monochromator 200-1600 nm. For the UPS measurements, the HTLs were deposited on pre-cleaned ITO substrate. The UPS analysis chamber was equipped with a hemispherical electron-energy analyzer (Kratos Ultra Spectrometer), and was maintained at 1.33 x 107 Pa. UPS measurements were performed using He I (hv=21.2 eV) source. The electron-energy analyzer was operated at constant pass energy of 10 eV (for UPS). During the UPS measurements, a sample bias of -9 V was used in order to separate the sample and the secondary edge for the analyzer.

Anode	interfacial	J _{sc} (mA/cm²)	V _{oc} (V)	FF (%)	PCE (%)	R _s (Ω.cm²)	R _{sh} (Ω.cm²)
layer							
PEDOT:PSS		14.5	0.75	66.9	7.27	7.62	714.3
PEDOT:PSS:WO _x		14.5	0.73	66.6	7.07	7.55	693.1
PEDOT:PSS:MoO _x		11.4	0.73	64.2	5.33	8.86	457.5
PEDOT:PSS:GO		14.9	0.75	68.3	7.53	7.50	702.9
PEDOT:PSS:CNT 14.8		14.8	0.74	68.1	7.48	6.26	533.3

Table 1. Photovoltaic parameters of conventional organic photovoltaics with different anode interfacial layers.

Table 2. Summary of photovoltaic parameters based on PBDTTT-EFT:PC₇₁BM with different anode interfacial layer.

Anode interfacial	J_{sc}	V _{oc}	FF	PCE	Rs	R_{sh}
layer	(mA/cm ²)	(V)	(%)	(%)	(Ω.cm ²)	(Ω.cm ²)
PEDOT:PSS	16.1	0.81	66.4	8.75	8.63	675.7
PEDOT:PSS:WO _x	16.6	0.81	65.8	8.85	8.15	574.7
PEDOT:PSS:MoO _x	16.0	0.81	62.7	8.16	9.06	423.7
PEDOT:PSS:GO	16.9	0.81	66.5	9.12	8.94	714.3
PEDOT:PSS:CNT	16.2	0.81	65.8	8.67	8.29	674.3

Figure S1. SEM images displaying the different film surface morphologies of (a) PEDOT:PSS, (b) PEDOT:PSS:WO_x, (c) PEDOT:PSS:MoO_x, (d) PEDOT:PSS:GO, and (e) PEDOT:PSS:CNT anode interfacial layers.

Figure S2. (a,d,g,j,m) PEDOT:PSS, PEDOT:PSS:WO_x, PEDOT:PSS:MoO_x, PEDOT:PSS:CNT, and PEDOT:PSS:GO layers treated with chlorobenzene, (b,e,h,k,n) PEDOT:PSS, PEDOT:PSS:WO_x, PEDOT:PSS:MoO_x, PEDOT:PSS:CNT, and PEDOT:PSS:GO layers treated with dichlorobenzene, and (c,f,i,l,o) PEDOT:PSS, PEDOT:PSS:WO_x, PEDOT:PSS:MoO_x, PEDOT:PS