Supplementary Information

Formation of onion-like fullerene and chemically converted graphene-like

nano-sheets from low-quality coals: application in photocatalytic degradation

of 2-nitrophenol

Tonkeswar Das^a, Purna K Boruah ^{b,c}, Manash R Das ^{b,c}, Binoy K Saikia^{a,c*}

^aCoal Chemistry Division, CSIR-North East Institute of Science & Technology, Jorhat-785006,

India

^bMaterials Science Division, CSIR-North East Institute of Science & Technology, Jorhat-785006, India

^cAcademy of Scientific and Innovative Research, CSIR-NEIST Campus, Jorhat-785006, India

Electron beam analyses (SEM)

For scanning electron microscopic (SEM) analysis, the samples were critical point dried, fixed to metal stubs with carbon conducting double sided adhesive tape. The samples were coated with platinum with the aid of a spot size 36 mm by Auto Fine Coater (JFC-1600; JEOL, Tokyo, Japan). and examined in a scanning electron microscope (Model No. JSM-6390LV; JEOL). Observations on the SEM images were made at 20 kV with a working distance of 11mm and spot size 36.

Figure S-1 SEM images of raw coals: (a) Coal-NG and (b) Coal-NK shows the presence of irregular size and shape distribution ranging from 1 to 50 micron in diameter; (c) EDX spectra of Coal-NG, (d) EDX spectra of Coal-NK, (e) EDX spectra of Coal-NG-NP, and (f) EDX spectra of Coal-NK-NP.

Figure S-2 XRD spectra of raw coal samples

Figure S-3 Raman multi peak fitting spectra of (a) Coal-NG, (b) Coal-NG-NP, (c) Coal-NK, and (d) Coal-NK-NP.

Figure S-4 XPS survey spectra of raw coals: **(a)** Coal-NG and **(b)** Coal-NK show C1S peak at around 290 eV due to Carboxyl (COO⁻) and Carbonyl (C=O) group; High resolution XPS spectra of O1S spectra of **(c)** Coal-NG-NP and **(d)** Coal-NK-NP show the presence of Carboxyl (O=C-O) and C-O, which are located at 531.90 eV and 532.24 eV respectively.

Figure S-5 Solid-state C¹³ NMR spectra of (a) Coal-NG. The prominent band at 30.69 ppm is for aliphatic carbon, 127.26 and 124.78 ppm for unsubstituted aromatic carbon, and 180.58 and 175.37 ppm for aromatic carbonyl group; (b) Coal-NK. The prominent band at 30.18 ppm is for aliphatic carbon, 126.83 ppm for unsubstituted aromatic carbon, 231.12 and 218.27 ppm for aromatic structural units; (c) Coal-NG-NP. The prominent band at 30.32 ppm is for aliphatic carbon, 36-50 ppm for protonated aromatic carbon, 129.73 and 127.51 ppm for unsubstituted aromatic system, 229.03 and 217.07 ppm for aromatic structural units; (d) Coal-NK-NP. Small peak appearing in the range of 14-16 ppm are for the sp³ hybridized carbon atoms attached to the aliphatic carbon, 128.54 and 127.34 ppm for unsubstituted aromatic carbon, 170.33 ppm for the formation of carbonyl group in aromatic structural units.

Figure S-6 UV-vis DRS spectra of the synthesized coal-derived CNMs

Figure S-7 Proposed mechanism for OCE process for preparing onion-like fullerene and chemically converted graphene-like nanosheets from low-quality coal.

Comparison of 2-NP adsorption performance of Coal-NG-NP and Coal-NK-NP under sunlight irradiation and in dark:

The adsorption of 2-NP onto Coal-NG-NP and Coal-NK-NP was investigated in dark to understand the adsorption behavior of these nanomaterials (at 0.1 mM concentration of 2-NP, catalyst loading 0.5gL⁻¹ at pH 5). Due to the presence of pores and surface chemical group, adsorption efficiency of about 26.54% and 21.43% was observed for Coal-NG-NP and Coal-NK-NP, respectively at 40 min treatment in dark (Figure S-8a). However 99.34% and 92.49% 2-NP degradation efficiency was observed when Coal-NG-NP and Coal-NK-NP were used as a photocatalyst within 40 min under sunlight irradiation (Figure S-8a). Moreover, we also calculated the adsorption capacity (adsorption potential) of Coal-NG-NP and Coal-NK-NP nanomaterials for the 2-NP adsorption in dark. The adsorption capacity of Coal-NG-NP and Coal-NK-NP for 2-NP adsorption was found to be 0.0531mmol.g⁻¹ and 0.0429mmol.g⁻¹ respectively, in 40 min (Figure S-8b). Therefore, the adsorption potential for both these nanomaterials is found to be less as compared to their photocatalytic degradation efficiency.

Figure S-8. (a) 2-NP removal performance of Coal-NG-NP and Coal-NK-NP under sunlight irradiation and in dark and (b) Adsorption potential vs time curve for the adsorption of 2-NP onto Coal-NG-NP and Coal-NK-NP in dark.

Figure S-9 IC-spectrum of Coal-NG-NP at pH 5 and reaction time of 10 minutes (a), 40 minutes (b); Coal-NK-NP at pH 5 and reaction time: 10 minutes (c), 40 minutes (d)

Figure S-10 Kinetic plot of $\ln (C_0/C)$ against time for 2-NP degradation using (a) Coal-NG-NP (b) Coal-NK-NP

Figure S-11 (a) Coal and HNO₃ acid mixture heated in oil bath at 150°C for 2 hours at atmospheric pressure; **(b)** Hot Coal and HNO₃ acid mixture was cooled in ice water bath; **(c)** recycled nitric acid were used in the oxidation process and molarity was adjusted by adding concentrated HNO₃ acid; **(d)** oxidized coal samples; **(e)** Final coal nano-products Coal-NG-NP (onion-like fullerene); **(f)** Final coal nano-product Coal-NK-NP (chemically converted graphene-like nano sheets).

(b)

Figure S-12 (a) photodegradation experiment of 2-nitrophenol by using the coal-derived carbon nanomaterials (photocatalyst) under sunlight; **(b)** 2-nitrophenol in aqueous phase (middle one in yellow colour) before treatment, treated with Coal-NG-NP (left one) become colourless, treated with Coal-NK-NP (right one) become colourless.

Proposed mechanism of photodegradation

The photoinduced charge separation and migration process under sunlight irradiations are involved in the photocatalytic degradation process of 2-NP. The 2-NP could act as a sensitizer under sunlight irradiation and excited electrons were injected to the coal-derived carbon nanomaterial surfaces (Coal-NK-NP and Coal-NG-NP). In addition, the Coal-NK-NP and Coal-NG-NP can act as an electron acceptor and electron transfer agent in the photodegradation process. Both the coal-derived carbon nanomaterials enhanced the continuous electron transfer from 2-NP to each surface. The surface adsorbed O_2 could trap the electrons and formation of O_2^{-} radicals (eq 1). In aqueous medium O_2^{-} radicals then reacts with H₂O and formation of highly active H₂O⁺ radicals (eq 2). Which are react with H⁺ ions present in the aqueous medium and generates highly efficient OH⁺ radicals (eqs 3 and 4). OH⁺ radicals are responsible for the fragmentation of 2-NP (eq 5).

$$O_2 + e^- \to O_2^{\bullet}$$
 (1)

$$e^{-} + O^{\bullet}_{2}^{-} + H_2O \rightarrow H_2O^{\bullet} + OH$$
⁽²⁾

$$e^{-} + H_2O^{\bullet} + H^+ \rightarrow H_2O_2 \tag{3}$$

$$e^{-} + H_2O_2 \rightarrow OH^{\bullet} + OH^{-}$$
(4)

$$OH^{\bullet} + 2-NP \rightarrow Degraded products$$
 (5)

Samples	Element	Weight%	Atomic%
Coal-NG	С	68.15	75.09
	0	28.43	23.52
	Al	0.45	0.22
	Si	0.44	0.21
	S	1.99	0.82
	Ca	0.17	0.05
	Fe	0.37	0.09
Coal-NK	С	65.25	73.86
	0	26.96	22.91
	Al	1.10	0.56
	Si	2.35	1.14
	S	2.44	1.03
	K	0.25	0.09
	Ca	0.17	0.06
	Fe	1.48	0.36
Coal-NG-NP	С	59.86	67.24
	0	37.38	31.52
	Na	0.47	0.28
	S	2.29	0.96
Coal-NK-NP	С	64.74	72.73
	0	29.12	24.56
	Na	1.08	0.63
	Al	0.27	0.13
	Si	0.33	0.16

Table S-1 EDX Characterization of the raw coal samples and coal-derived carbon nanomaterials (CNMs)

Coals	d-values	Assignments
Coal-NK	10.16	Muscavite (M)
	7.19	Kaolinite (K)
	5.10	Kaolinite (K), Muscavite (M)
	4.27	Quartz (Q)
	3.93	Quartz (Q)
	3.35	Quartz (Q)
	3.25	Quartz (Q)
Coal-NG	7.26	Kaolinite (K)
	5.16	Quartz (Q)
	4.50	Quartz (Q)
	4.29	Quartz (Q)
	3.35	Quartz (Q)
	3.08	Pyrite, Calcite
	2.47	Hematite (H)
	2.19	Hematite (H), Quartz (Q)
	2.08	Quartz (Q)

Table S-2 Assignments of the XRD d-values of raw coals (Coal-NG and Coal-NK)

Table S-3	Summary	of D-band,	G-band	and	I _D /I _G	ratio	of	raw	coal	samples	and	coal-
derived ca	rbon nanon	naterials										

samples	D-band (cm ⁻¹)	G-band (cm ⁻¹)	I _D /I _G
Coal-NK	1378	1597	2.00
Coal-NK-NP	1382	1595	2.79
Coal-NG	1387	1595	1.83
Coal-NG-NP	1384	1596	1.81

Wave number Samples Assignments (cm-1) (w: weak; m: medium; s: strong; b: broad) Coal-NG 3405 (b) O-H and N-H stretching vibration CH₂ asymmetric vibration and CH₃ symmetric vibration 2921 (s), 2850 (m) bonded to aromatic groups Aromatic C=C stretching vibrations, C=C vinyl or other 1611 (s) containing functional group 1444 (s) Aliphatic CH₂ and CH₃ group 1187 (b), 1007 (s) Amorphous carbon or mineral matters Coal-NK 3403 (b) O-H and N-H stretching vibration 2921 (s), 2854 (m) CH₂ asymmetric vibration and CH₃ symmetric vibration bonded to aromatic groups Aromatic C=C stretching vibrations, C=C vinyl or other 1600 (s) containing functional group 1442 (s) Aliphatic CH₂ and CH₃ group 1030 (s, b) Amorphous carbon or mineral matters OH and N-H Stretching vibration Coal-NG-NP 3463, 3508 (b) CH₂ asymmetric vibration and CH₃ symmetric vibration 2923 (s), 2851 (s) bonded to aromatic groups 2523 (b) Intramolecular O-H stretching 1711.90 (b,s) C=O group Aromatic C=C stretching 1621.24 (b,s) COO⁻ and CH₃ group 1440 (s, w) 1257.64 (b,s) For C=O stretching of COOH C-O stretching, Amorphous carbon or mineral matters 1034.85 (w) Coal-NK-NP OH and N-H Stretching vibration 3639 (b) 2912 (b), 2845 (b) CH₂ asymmetric vibration and CH₃ symmetric vibration bonded to aromatic groups 2541.32 (b) Intramolecular O-H stretching 1720 (b) C=O group Aromatic C=C stretching 1621(b,s) 1440 (b) COO⁻ and CH₃ group For C=O stretching of COOH 1250 (b) 1042 (w) C-O stretching, Amorphous carbon or mineral matters

 Table S-4 FTIR Assignments of the raw coal samples and coal-derived carbon nanomaterials

Table S-5: Yield of different types of carbon nanomaterials produced from coal using different methods

Carbon product	Synthesis	Carbon	Yield	Reference
	Technique	Sources		
Graphene quantum	Chemical	Six coal	14.66-56.30%	Dong et al. ⁴
dots, graphene	Oxidation	samples with		
oxide, carbon	methods	different rank		
quantum dots,				
graphite nanocrystal				
Multi-walled CNTs	DC arc	Bituminous	Taiji: 62.60%	Qiu et al. ⁵
	discharge	coals	Fushun: 58.20%	
		(Taiji,	Tonghua: 69.30%	
		Fushun,	Sanbao: 81.90%	
		Tonghua,	Gujiao: 81.20%	
		Sanbao,	Xiaoyi: 76.40%	
		Gujiao,	Kailuan: 78.80%	
		Xiaoyi,	Xiongtai: 66.20%	
		Kailuan,	Pangzhuang: 75.70%	
		Xiongtai,	Xiangyuan: 83.60%	
		Pangzhuang,	New Zealand: 71.40%	
		Xiangyuan),		
		New Zealand)		
Graphene quantum	Chemical	Anthracite,	10-20%	Ye et al. ²⁷
dots	oxidation	Bituminous,		
	methods	Coke		
Graphene quantum	Chemical	Anthracite	20%	Ye et al. 28
dots	oxidation	coal		
	methods			
Nanodiamonds	Laser	Anthracite	5-10%	Xiao et al. ⁵¹
	ablation	(Vietnam)		
		Bitumite		
		(Indonesia)		
		Coke (China)		
Onion-like	Oxidation-	Sub-	76.25-82.00%	Present Study
Fullerenes and	Cum-	bituminous		
Chemically	Extraction	coal		
converted	Process	(Northeastern		
graphene-like nano-		coalfield,		
sheets		India)		