Penicillanthone and Penicillidic acids A-C from the Soil-derived Fungus *Penicillium aculeatum* PSU-RSPG105

Charuwan Daengrot,^a Vatcharin Rukachaisirikul,^{*a} Kwanruthai Tadpetch,^a Souwalak Phongpaichit,^b Kawitsara Bowornwiriyapan,^b Jariya Sakayaroj,^c Xu Shen^d

^aDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand ^bNatural Products Research Center of Excellence and Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand ^cNational Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Klong Luang, Pathumthani 12120, Thailand ^dShanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China

^{*} To whom correspondence should be addressed. *Tel.: +66 74 288 435; fax: +66 74 558 841. *E-mail address*: <u>vatcharin.r@psu.ac.th</u>

List of Supporting Information		
Figure S1.	¹ H NMR spectrum of penicillanthone (1; 300 MHz, Acetone- d_6)	3
Figure S2.	¹³ C NMR spectrum of penicillanthone (1; 75 MHz, Acetone- d_6)	3
Figure S3.	¹ H NMR spectrum of penicillidic acid A (2; 500 MHz, CD ₃ OD)	4
Figure S4.	¹³ C NMR spectrum of penicillidic acid A (2; 125 MHz, CD ₃ OD)	4
Figure S5.	¹ H NMR spectrum of penicillidic acid B (3 ; 300 MHz CD ₃ OD)	5
Figure S6.	¹³ C NMR spectrum of penicillidic acid B (3 ; 75 MHz, CD ₃ OD)	5
Figure S7.	¹ H NMR spectrum of penicillidic acid C (4; 500 MHz, CD ₃ OD)	6
Figure S8.	¹³ C NMR spectrum of penicillidic acid C (4; 125 MHz, CD ₃ OD)	6
Figure S9.	¹ H NMR spectrum of tenellic acid A methyl ester (14 ; 300 MHz, CDCl ₃)	7
Figure S10.	¹³ C NMR spectrum of tenellic acid A methyl ester (14 ; 75 MHz, CDCl ₃)	7
Figure S11.	¹ H NMR spectrum of penicillide methyl ester A (6b ; 500 MHz, CDCl ₃)	8
Figure S12.	¹³ C NMR spectrum of penicillide methyl ester A (6b ; 125 MHz, CDCl ₃)	8
Figure S13.	¹ H NMR spectrum of penicillide methyl ester B (9a ; 300 MHz, CDCl ₃)	9
Figure S14.	¹³ C NMR spectrum of penicillide methyl ester B (9a ; 75 MHz, CDCl ₃)	9
Table S1	Optical rotations of compounds 5, 6-9, 11 and 13-18.	10
Table S2	Cotton effects in CD spectrum of compounds 15-17.	10
Table S3	¹ H NMR data of compounds 14 , 6b and 9a	11
Table S4	¹³ C NMR data of compounds 14 , 6b and 9a	12

Figure S1. ¹H NMR spectrum of penicillanthone (1; 300 MHz, Acetone- d_6)

Figure S2. ¹³C NMR spectrum of penicillanthone (1; 75 MHz, Acetone- d_6)

Figure S3. ¹H NMR spectrum of penicillidic acid A (**2**; 500 MHz, CD₃OD)

Figure S4. ¹³C NMR spectrum of penicillidic acid A (2; 125 MHz, CD₃OD)

Figure S6. ¹³C NMR spectrum of penicillidic acid B (3; 75 MHz, CD₃OD)

Figure S8. ¹³C NMR spectrum of penicillidic acid C (**4**; 125 MHz, CD₃OD)

Figure S10. ¹³C NMR spectrum of tenellic acid A methyl ester (14; 75 MHz, CDCl₃)

Figure S12. ¹³C NMR spectrum of penicillide methyl ester A (6b; 125 MHz, CDCl₃)

Figure S14. ¹³C NMR spectrum of penicillide methyl ester B (9a; 75 MHz, CDCl₃)

Compounds	Observed optical rotation	Lit. optical rotation ^{ref}
5	$[\alpha]_D^{24}$ +25.2° (<i>c</i> 0.13, CH ₃ OH)	$\left[\alpha\right]_{D}^{20}$ +33.3° (<i>c</i> 1.14, CH ₃ OH) ⁶
6	$[\alpha]_D^{24}$ +4.1° (<i>c</i> 0.82, CH ₃ OH)	$[\alpha]_D^{24}$ +4.9° (<i>c</i> 0.82, CH ₃ OH) ⁸
6a	$[\alpha]_D^{24}$ +3.7° (<i>c</i> 0.82, CH ₃ OH)	$[\alpha]_D^{24}$ +3.8° (<i>c</i> 0.82, CH ₃ OH) ⁸
6b	$[\alpha]_D^{24}$ -10.0° (<i>c</i> 0.18, CH ₃ OH)	-
7	$[\alpha]_D^{24}$ -55.8° (<i>c</i> 0.62, CH ₃ OH)	$[\alpha]_{D}$ -57.6° (<i>c</i> 0.62, CH ₃ OH) ⁷
8*	$[\alpha]_D^{24}$ -4.8° (c 0.18 CH ₃ OH)	$[\alpha]_D^{24}$ -6.1° (<i>c</i> 0.18, CH ₃ OH) ⁹
9	$[\alpha]_D^{24}$ +5.3° (<i>c</i> 0.64, CH ₃ OH)	$[\alpha]_D^{25}$ +3.1° (<i>c</i> 0.64, CH ₃ OH) ¹⁰
9a	$[\alpha]_D^{24}$ -9.3° (<i>c</i> 0.18, CH ₃ OH)	-
11	$[\alpha]_D^{24}$ +5.8° (<i>c</i> 0.098, CH ₃ OH:CHCl ₃)	$[\alpha]_D^{28}$ +8.21° (<i>c</i> 0.098, CH ₃ OH:CHCl ₃) ¹²
13*	$[\alpha]_D^{27}$ +5.5° (<i>c</i> 0.53, CH ₃ OH)	Hydroxytenellic acid B
		: $[\alpha]_D^{25}$ +5.0 (c 0.53, CH ₃ OH) ¹⁰
14*	$[\alpha]_D^{27}$ -10.6° (<i>c</i> 0.18, CH ₃ OH)	-
15	$[\alpha]_D^{24}$ -35.7° (<i>c</i> 0.20, CHCl ₃)	$[\alpha]_D^{29}$ -50.0° (<i>c</i> 0.20, CHCl ₃) ⁷
16*	$[\alpha]_{\rm D}^{24}$ -40.2° (<i>c</i> 0.20, CH ₃ OH)	-
17*	$[\alpha]_D^{24}$ -54.6° (<i>c</i> 0.62, CH ₃ OH)	-
18	$[\alpha]_D^{24}$ -253.7° (<i>c</i> 0.11, CHCl ₃)	$\left[\alpha\right]_{D}^{20}$ -298° (c 0.11, CHCl ₃) ¹⁶

Table S1 Optical rotations of compounds 5, 6-9, 11 and 13-18.

* = The absolute configuration has not been reported.

Table S2 Cotton effects in CD spectrum of compounds 7, 15-17.

Compounds	⊿ε (nm)	Lit. ⊿ɛ (nm) ^{ref}
7	-0.1 (202), +0.3 (243), +0.2 (269),	-7.0 (202), +1.0 (243), +0.5 (269), -0.8
	-0.2 (291)	(291) ¹⁹
15	-7.6 (213), +1.9 (250), -1.6 (283)	-6.2 (213), +0.4 (250), -0.6 (283) ⁷
16	-2.7 (213), +0.2 (250), -0.4 (283)	-
17	-13.6 (202), +1.2 (243), +0.8	-
	(269), -0.8 (291)	

Position	14^{a}	6b ^b	9a ^{<i>a</i>}
1	6.53, d (8.7)	6.27, d (8.5)	6.31, d (8.7)
2	7.35, d (8.7)	7.19, d (8.5)	7.23, d (8.7)
4-OMe	3.87, s	3.87, s	3.86, s
5-OMe	4.08, s	3.96, s	3.98, s
7	10.21, s	4.37, s	4.94, s
7-OMe		3.31, s	
8	7.28, brd (1.5)	6.90, brs	6.80, brs
9-Me	2.37, s	2.36, s	2.37, s
10	7.11, brd (1.5)	6.73, brs	6.77, brs
11-OMe		3.74, s	3.77, s
1′	4.54, dd (3.9, 9.3)	4.53, dd (4.0, 9.5)	4.54, dd (3.9, 9.3)
2'a	1.64, m	1.67, m	1.66, ddd (5.1, 9.3, 14.1)
2′b	1.32, ddd (3.9,	1.36, m	1.34, ddd (3.9, 8.7, 14.1)
3'	1.80, m	1.78, m	1.80, m
4′	0.92, d (6.6)	0.92, d (6.5)	0.92, d (6.6)
5'	0.96, d (6.9)	0.95, d (6.5)	0.95, d (6.6)
6'	3.18, s	3.18, s	3.18, s

Table S3. ¹H NMR data of compounds 6b, 9a and 14 (*J* in Hz)

^{*a*}Recorded in CDCl₃ (300 MHz). ^{*b*}Recorded in CDCl₃ (500 MHz).

Position	14 ^{<i>a</i>}	6b ^b	9a ^{<i>a</i>}
1	112.0, CH	109.7, CH	109.5, CH
2	130.4, CH	128.6, CH	129.1, CH
3	132.3, C	132.6, C	129.5, C
4	156.3, C	155.8, C	156.1, C
4-OMe	62.8, CH ₃	62.4, CH ₃	62.5, CH ₃
4a	117.5, C	117.4, C	116.8, C
5	168.1, C	166.7, C	166.8, C
5-OMe	53.4, CH ₃	52.1, CH ₃	52.4, CH ₃
7	189.4, CH	68.8, CH ₂	61.2, CH ₂
7-OMe		52.2, CH ₃	
7a	130.1, C	132.6, C	135.0, C
8	119.8, CH	121.5, CH	121.9, CH
9	137.3, C	135.9, C	136.2, C
9-Me	21.0, CH ₃	21.3, CH ₃	21.3, CH ₃
10	124.7, CH	113.6, CH	113.6, CH
11	149.6, C	152.0, C	152.3, C
11-OMe		56.2, CH ₃	56.1, CH ₃
11a	142. 5, C	139.4, C	138.9, C
12a	155.4, C	155.4, C	155.1, C
1′	75.3, CH	75.6, CH	75.5, CH
2'	47.1, CH ₂	46.9, CH ₂	47.0, CH ₂
3'	25.0, CH	25.0, CH	25.0, CH
4'	23.4, CH ₃	23.3, CH ₃	23.3, CH ₃
5'	21.9, CH ₃	22.0, CH ₃	22.0, CH ₃
6'	56.9, CH ₃	56.4, CH ₃	56.6, CH ₃

Table S4. ¹³C NMR data of compounds **6b**, **9a** and **14** (δ_{C} , type)

^{*a*}Recorded in CDCl₃ (75 MHz). ^{*b*}Recorded in CDCl₃ (125 MHz).