Supporting Information for

Synthesis, Structure and Photophysical Properties of Near-infrared 3,5-DiarylbenzoBODIPY Fluorophores

Jun Wang, Qinghua Wu, Yajun Xu, Changjiang Yu, Yun Wei, Xiaolong Mu, Erhong Hao* and

Lijuan Jiao*

The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of

Molecule-Based Materials; School of Chemistry and Materials Science, Anhui Normal University,

Wuhu, 241000, China

*To whom correspondence should be addressed. E-mail: haoehong@ahnu.edu.cn, jiao421@ahnu.edu.cn

Contents:

1. Scheme S1	S2
2. Crystal Structure	S2
3.Table S3	S7
4. UV-vis and Fluorescence Spectra	
5. Copies of ¹ H and ¹³ C NMR spectra	
6. Copies of HRMS	
7. DFT calculation	S42

1. Scheme S1. Attempted Syntheses of BODIPY 1X.

Figure S1: X-ray structures of **1a**. C, light gray; H, gray; N, blue; B, yellow; F, light green; O, red.

Figure S2: Intermolecular crystal packing of **1a** through H-bonding (dotted line). C, light gray; H, gray; N, blue; B, yellow; F, light green; O, red.

Figure S3: X-ray structures of **1c**. C, light gray; H, gray; N, blue; B, yellow; F, light green.

Figure S4: Intermolecular crystal packing of **1c** through H-bonding (dotted line). C, light gray; H, gray; N, blue; B, yellow; F, light green.

Figure S5: X-ray structures of **1d**. C, light gray; H, gray; N, blue; B, yellow; F, light green; O, red.

Figure S6: Intermolecular crystal packing of **1d** through H-bonding (dotted line). C, light gray; H, gray; N, blue; B, yellow; F, light green; O, red.

1 ,			
	1a	1c	1d
Empirical formula	$C_{31}H_{23}BF_2N_2O_2$	$C_{29}H_{17}BF_4N_2$	$C_{31}H_{23}BF_2N_2O_2$
Formula weight	504.32	480.26	504.32
Temperature [K]	293(2)	293(2)	293(2)
Wavelength	0.71073	0.71073	0.71073
Crystal system	Triclinic	Monoclinic	Triclinic
space group	P-1	P2(1)/n	P-1
a[]	10.2591(10)	12.1936(18)	7.683(4)
b[]	10.3442(10)	15.062(2)	12.170(6)
c[]	12.7331(12)	12.2515(18)	13.064(6)
α [°]	96.5350(10)	90	85.699(6)
β [°]	104.5740(10)	97.131(2)	81.017(7)
γ [°]	104.6180(10)	90	86.489(6)
V[]	1242.6(2)	2232.7(6)	1201.6(10)
Z	2	4	2
Calculated density [g.cm-3]	1.348	1.429	1.394
Absorption coefficient (mm ⁻¹)	0.094	0.107	0.097
F(000)	524	984	524
Crystal size (mm)	0.19×0.18×0.16	0.15×0.13×0.12	0.16×0.13×0.12
θ_{\max} [°]	27.70	27.61	27.64
Index ranges	$-13 \le h \le 13$	$-15 \le h \le 15$	$\textbf{-9} \le h \le 10$
	$-13 \le k \le 13$	$\textbf{-19} \le k \le 19$	$-15 \le k \le 15$
	$-16 \le l \le 15$	$-15 \le l \le 15$	$-16 \le l \le 16$
Unique reflections	5665	5131	5338
Reflections observed $[I > 2\sigma(I)]$	4055	3294	3105
Parameters	345	325	345
R1 (on <i>F</i>) [$I > 2\sigma(I)$]	0.0496	0.0517	0.0721
wR2 (on F^2)	0.1321	0.1418	0.2199
Largest diff. peak/hole (eA-3)	0.514/-0.431	0.424/-0.530	0.327/-0.328

 Table S1. Crystallographic data and details of the structure determinations of the compounds 1a, 1c and 1d

Table S2. Selected Geometrical Parameters of 1a, 1c and 1d obtained from crystallography

	1a	1c	1d
the B-N bond distances $(Å)$	1.5722(27)	1.5521(31)	1.5777(39)
	1.5729(29)	1.5580(27)	1.5809(37)
		2.2466(17)	
		2.3979(15)	
the intramolecular F-H	2.2980(16)	2.5169(19)	2.2615(19)
Hydrogen bond distances (Å)	2.4856(14)	2.5233(20)	2.3470(18)
		2.5126(15)	
		2.5249(16)	
the intermolecular F-H Hydrogen bond distances (Å)	2.5482(19) 2.8332(20) 2.7450(16) 2.8740(14)	2.3830(18) 2.4489(17) 2.8012(17) 2.5571(13) 2.5962(20)	2.7480(18) 2.6395(18) 2.7952(19) 2.8226(17)
dihedral angles of two pyrrole rings in dipyyrin core (deg)	6.421(70)	3.864(69)	6.044(96)
dihedral angles between phenyl	48.124(68)	47.329(62)	40.841(93)
ring and dipyrrin core (deg)	56.931(63)	51.263(65)	46.090(89)

BODIPYs	Solvent	$\lambda_{abs}{}^{max}(nm)$	$\lambda_{em}^{max}(nm)$	$log\epsilon_{max}$	Φ_{a}	Stokes Shift (cm ⁻¹)
	Acetonitrile	645	680	4.78	0.74	798
	Methanol	648	680	4.74	0.78	726
1a	THF	653	684	4.92	0.73	694
	Dichloromethane	654	687	4.94	0.76	734
	Toluene	658	690	4.84	0.70	705
	Acetonitrile	640	671	4.86	0.85	722
	Methanol	642	673	4.84	0.99	717
1b	THF	648	677	4.94	0.82	661
	Dichloromethane	648	679	4.97	0.91	704
	Toluene	653	681	5.04	0.76	630
	Acetonitrile	634	663	4.76	0.93	690
	Methanol	635	664	4.74	0.93	688
1c	THF	641	669	4.84	0.82	653
	Dichloromethane	643	671	4.87	0.92	649
	Toluene	646	674	4.94	0.78	643
	Acetonitrile	635	669	4.80	0.90	800
	Methanol	637	671	4.86	0.96	795
1d	THF	643	675	4.85	0.87	737
	Dichloromethane	648	677	4.98	0.87	757
	Toluene	648	679	5.01	0.75	704
	Acetonitrile	690	737	4.69	0.33	924
	Methanol	693	738	4.77	0.30	880
1e	THF	698	742	4.82	0.33	850
	Dichloromethane	699	745	4.96	0.36	815
	Toluene	706	747	4.86	0.35	777

3. Table S3: Photophysical properties of BODIPYs 1a-e and 5, 6 in different solvents at room temperature.

The fluorescence quantum yields were calculated using ZnPc in DMF solution ($\phi = 0.28$) as the standards for **1a-d**, and 1,3,5,7-(4-methoxy)phenylazaBODIPY ($\phi = 0.36$ in chloroform) for **1e**, respectively.

4. UV-vis and Fluorescence Spectra

Figure S7. Absorption (top) and emission (bottom) spectra of compound 1a recorded in different solvents. Excited at 620 nm.

Figure S8. Absorption (top) and emission (bottom) spectra of compound **1b** recorded in different solvents. Excited at 610 nm.

Figure S9. Absorption (top) and emission (bottom) spectra of compound **1c** recorded in different solvents. Excited at 610 nm.

Figure S10. Absorption (top) and emission (bottom) spectra of compound 1d recorded in different solvents. Excited at 610 nm.

Figure S11. Absorption (top) and emission (bottom) spectra of compound 1e recorded in different solvents. Excited at 660 nm.

Figure S12. Excitation spectrum (dash line) and absorption spectrum (solid line) of 1a in dichloromethane.

Figure S13. Excitation spectrum (dash line) and absorption spectrum (solid line) of 1b in dichloromethane.

Figure S14. Excitation spectrum (dash line) and absorption spectrum (solid line) of 1c in dichloromethane.

Figure S15. Excitation spectrum (dash line) and absorption spectrum (solid line) of 1d in dichloromethane.

Figure S16. Excitation spectrum (dash line) and absorption spectrum (solid line) of 1e in dichloromethane.

5. Copies of ¹H and ¹³C NMR spectra

¹H NMR spectrum of 2a in CDCl₃

¹³C NMR spectrum of **2c** in CDCl₃

¹H NMR spectrum of **1e** in CDCl₃

6. Copies of HRMS

HRMS (ESI) calcd. for $C_{16}H_{14}O_2N \ [M+H]^+: 252.1025$, found 252.1019.

HRMS (ESI) calcd. for C₁₉H₂₀ON [M+H]⁺: 278.1545, found 278.1539

HRMS (ESI) calcd. for $C_{19}H_{20}ON$ [M+H]+: 240.0825, found 240.0819

HRMS (ESI) calcd. for $C_{16}H_{14}O_2N$ [M+H]⁺: 252.1025, found 252.1019.

HRMS(ACPI) calcd. for $C_{14}H_{12}NOS \ [M+H]^+: 242.0640$, found 242.0634.

HRMS (ACPI) calcd. for C₃₁H₂₄O₂N₂BF₂ [M+H]⁺: 505.1899, found 505.1898;

HRMS (ACPI) calcd. for C₃₇H₃₆N₂BF₂ [M+H]⁺: 557.2940, found 557.2944;

20120913_APCI+X3#32 RT: 0.45 AV: 1 NL: 6.32E6 T: FTMS + c APCI corona Full ms [200.00-1500.00]

.

			Theo.	Delta	RDB	
m/z	Intensity	Relative	Mass	(mmu)	equiv.	Composition
473.143	487544	7.71	473.143	-0.01	22	C30 H17 N2 B F3
475.159	1309349	20.7	475.159	-0.04	21	C30 H19 N2 B F3
476.162	415903.3	6.58	476.167	-4.48	20.5	C30 H20 N2 B F3
480.153	728624	11.52	480.154	-0.98	20	C30 H19 N B F4
481.149	2822913	44.64	481.149	0.08	20	C29 H18 N2 B F4
482.153	868623.7	13.74	482.153	0.28	20.5	C31 H20 N F4
484.187	1558229	24.64	484.185	1.44	18	C30 H23 N B F4
485.184	6323982	100	485.181	2.83	18	C29 H22 N2 B F4
486.187	2090009	33.05	486.188	-1.88	17.5	C29 H23 N2 B F4
487.19	343277.4	5.43	487.192	-1.91	18	C31 H25 N F4
		<i>a</i>	-	404 4 400	0 1 4 0 4	1 1 0 1

HRMS (ACPI) calcd. for C₂₉H₁₈N₂BF₄ [M+H]⁺: 481.1499, found 481.1494;

HRMS (ACPI) calcd. for C₃₁H₂₄O₂N₂BF₂ [M+H]+: 505.1899, found 505.1895;

HRMS (MALDI-TOF) calcd. for C₂₇H₂₀N₂S₂BF₂ [M+H]+: 485.1129, found 485.1198;

7. DFT calculation

Chart S1. Chemical Structure of BODIPY 7.

Table S4. Selected electronic excitation energies (eV) and oscillator strengths (f), configurations of the low-lying excited states of the BODIPY **1a-e** calculated by TD-B3LYP/6-31+G(d,p) // B3LYP/6-31G(d) based on the optimized ground state geometries. The TDDFT of all the molecules in dichloromethane were using the Self-Consistent Reaction Field (SCRF) method and the Polarizable Continuum Model (PCM).

	Electronic	TD-B3LYP/6-31+G(d,p)//B3LYP/6-31G(d)				
	transition	Energy	y/ eV [a]	$f^{[b]}$	Composition ^[c]	CI [d]
1a	S0→S1	2.0433 eV	606.79 nm	0.9165	$HOMO \rightarrow LUMO$	0.7092
1b	S0→S1	2.0834 eV	595.12 nm	0.9277	$HOMO \rightarrow LUMO$	0.7095
1c	S0→S1	2.0989 eV	590.71 nm	0.8952	$HOMO \rightarrow LUMO$	0.7104
					$\mathrm{HOMO} \leftarrow \mathrm{LUMO}$	0.1016
1 d	S0→S1	2.0897 eV	593.30 nm	0.8824	$HOMO \rightarrow LUMO$	0.7097
1e	S0→S1	1.8786 eV	659.99 nm	0.8795	$HOMO \rightarrow LUMO$	0.7169
					$\mathrm{HOMO} \leftarrow \mathrm{LUMO}$	0.1073

[a] Only the selected low-lying excited states are presented. [b] Oscillator strength. [c] Only the main configurations are presented. [d] The CI coefficients are in absolute values.

DFT optimized coordinates

Compound 1a			
В	-0.05420300	-0.17649200	0.02740500
С	-4.10456500	5.73761400	-0.41939300
Н	-3.04475400	5.90727400	-0.18964200
Н	-4.68209900	6.61899600	-0.13500000
Н	-4.21681300	5.56223900	-1.49727500
F	-0.16491600	0.58616400	1.17824800
Ν	-1.36988200	-1.05271000	-0.09076100
0	-4.63648000	4.66304100	0.34134900
С	-4.08614100	3.42683700	0.18567600
F	0.11714200	0.59372300	-1.11324900
Ν	1.18927300	-1.15434300	0.12489200
0	4.73839100	4.38176400	0.20940700
С	-3.03493700	3.12434100	-0.68846300
Н	-2.58951700	3.89077000	-1.31215900
С	-2.54501000	1.82216200	-0.76806000
Н	-1.72693900	1.60719700	-1.44215200
С	-3.08951200	0.78994200	0.01202100
С	-4.15104300	1.11487800	0.88503500
Н	-4.57265000	0.34421600	1.52259200
С	-4.63884000	2.40843600	0.97722200
Н	-5.44229600	2.65947000	1.66250700
С	-2.65124200	-0.60827900	-0.07611700
С	-3.52781700	-1.74579800	-0.13714900
С	-4.92977600	-1.86238700	-0.22041300
Н	-5.56016700	-0.97912900	-0.23727500
С	-5.48545300	-3.12841400	-0.29507800
Н	-6.56405500	-3.24055600	-0.35993400
С	-4.66831600	-4.28374400	-0.29772700
Н	-5.13555000	-5.26314000	-0.35674000
С	-3.28730800	-4.18738000	-0.24056600
Н	-2.67028200	-5.08189600	-0.25953800
С	-2.70860700	-2.90860200	-0.16807200
С	-1.35623600	-2.44913300	-0.12370400
С	-0.16683200	-3.15691500	-0.05008500
Н	-0.20660700	-4.24122600	-0.08431400
С	1.07205600	-2.54471700	0.06746300
С	2.38575300	-3.10538500	0.08529200
С	2.86829300	-4.42567500	0.07634700
Н	2.18688200	-5.27160700	0.03749000
С	4.23794600	-4.62742700	0.12767000
Н	4.63120700	-5.64050900	0.12388200
С	5.13863900	-3.53783600	0.19899000

Н	6.20564200	-3.73384800	0.25653300
С	4.67856300	-2.23218000	0.20615400
Н	5.37178100	-1.40010300	0.27886100
С	3.28926300	-2.00683100	0.13083600
С	2.50023600	-0.80669700	0.14201500
С	3.04150700	0.55886400	0.14337100
С	2.58877500	1.57305500	1.01267500
Н	1.76859900	1.37093600	1.68779700
С	3.17783500	2.82703600	1.00829800
Н	2.83432200	3.60629600	1.68136700
С	4.23530400	3.11779000	0.13291100
С	4.69773100	2.12643200	-0.74086400
Н	5.50356700	2.32409200	-1.43843500
С	4.10519600	0.86441300	-0.72243200
Н	4.45734200	0.11088000	-1.42005300
С	5.80628300	4.73570600	-0.65560700
Н	6.69274600	4.11260800	-0.47808600
Н	6.04486800	5.77572000	-0.42596700
Н	5.51425600	4.65507700	-1.71090600
Compound 1b			
В	0.00007900	-0.7602690	0.00022900
F	-0.14117400	0.0040680	0 1.14605700
Ν	-1.27976200	-1.6909430	0 -0.10983700
С	-4.17406300	2.7191260	-0.00081900
F	0.14128100	0.0044740	-1.14533500
Ν	1.27995000	-1.6909000	0.10997800
С	-3.13759700	2.3838110	-0.88245800
С	-2.58793800	1.1030830	-0.92424500
С	-3.06415100	0.0917000	-0.07701000
С	-4.10922700	0.4173110	0 0.80922800
С	-4.64173700	1.7000330	0 0.84715300
С	-2.57531100	-1.2946420	0 -0.11465400
С	-3.41045200	-2.4626250	0 -0.13893600
С	-4.80751600	-2.6304260	0 -0.21563600
С	-5.31769800	-3.9170140	0 -0.24919600
С	-4.45979400	-5.0421850	0 -0.21630100
С	-3.08302300	-4.8958350	0 -0.16213900
С	-2.54976600	-3.5957920	0 -0.13041000
С	-1.21506900	-3.0859690	0 -0.09659900
С	0.00015100	-3.7465590	0.00005700
С	1.21535100	-3.0859270	0.09670400
С	2.55008700	-3.5956540	0.13039600
С	3.08341300	-4.8956700	0.16204500

С	4.46019600	-5.04194900	0.21606700
С	5.31803300	-3.91672400	0.24889500
С	4.80777900	-2.63016200	0.21540300
С	3.41069800	-2.46242800	0.13885000
С	2.57546900	-1.29450100	0.11466100
С	3.06419500	0.09187700	0.07704200
С	2.58801600	1.10316900	0.92440200
С	3.13754900	2.38395200	0.88260900
С	4.17383500	2.71942300	0.00082200
С	4.64151700	1.70040400	-0.84724100
С	4.10914400	0.41762900	-0.80930300
Н	-2.73810800	3.12836100	-1.56197700
Н	-1.78280400	0.88891700	-1.61420300
Н	-4.48300600	-0.33693600	1.49508600
Н	-5.43531600	1.90923000	1.55925000
Н	-5.46763100	-1.76987500	-0.25705000
Н	-6.39162100	-4.06974400	-0.30824500
Н	-4.89210800	-6.03882800	-0.24389700
Н	-2.43519100	-5.76847100	-0.15189500
Н	0.00016500	-4.83216700	0.00005900
Н	2.43561400	-5.76833200	0.15183700
Н	4.89257700	-6.03856400	0.24360200
Н	6.39197200	-4.06938300	0.30783700
Н	5.46786500	-1.76958900	0.25675600
Н	1.78299600	0.88889200	1.61446200
Н	2.73810800	3.12841300	1.56225200
Н	5.43500300	1.90970300	-1.55940900
Н	4.48292800	-0.33655500	-1.49522400
С	-4.79528400	4.12460900	0.07092900
С	-4.15906700	5.09973300	-0.93745200
Н	-4.63293000	6.08374100	-0.84728800
Н	-3.08650400	5.23180300	-0.75610400
Н	-4.29277100	4.76247400	-1.97158200
С	-6.30935800	4.03405800	-0.23556800
Н	-6.83261700	3.38857100	0.47764100
Н	-6.76911200	5.02874000	-0.18416000
Н	-6.48258600	3.63156800	-1.24019900
С	-4.59390900	4.70214900	1.49256500
Н	-3.52822700	4.78537400	1.73391800
Н	-5.03869700	5.70233100	1.56362200
Н	-5.06143900	4.07420800	2.25817500
С	4.79485100	4.12498700	-0.07101900
С	4.59303100	4.70250800	-1.49260800
Н	5.03748100	5.70283700	-1.56373100

Н	5.06063200	4.07473100	-2.25830800
Н	3.52727900	4.78539000	-1.73376700
С	4.15875400	5.09998600	0.93755500
Н	3.08612800	5.23193700	0.75648600
Н	4.29275700	4.76268600	1.97163100
Н	4.63247000	6.08405700	0.84731500
С	6.30900800	4.03467300	0.23511000
Н	6.76862300	5.02940600	0.18344200
Н	6.48253200	3.63236000	1.23976100
Н	6.83218400	3.38914100	-0.47812000
Compound 1c			
В	0.00000400	0.17678000	-0.00037900
С	-2.57549500	-0.35544700	-0.09208300
С	-3.41173300	-1.52190800	-0.10863600
С	-4.80979500	-1.68881600	-0.17248900
С	-5.32084700	-2.97499400	-0.19968100
С	-4.46331900	-4.10069400	-0.17315800
С	-3.08604800	-3.95542100	-0.13206500
С	-2.55162900	-2.65577000	-0.10677200
С	-1.21617600	-2.14715300	-0.08571200
С	-0.00011500	-2.80799700	-0.00015600
С	1.21602200	-2.14729800	0.08538800
С	2.55147100	-2.65588300	0.10685200
С	3.08593600	-3.95551500	0.13225100
С	4.46320900	-4.10073000	0.17355200
С	5.32070600	-2.97500700	0.20012300
С	4.80961300	-1.68884500	0.17280800
С	3.41156000	-1.52200200	0.10883000
С	2.57530500	-0.35556900	0.09203400
С	-3.06038600	1.03279900	-0.04860200
С	-2.58238200	2.03918500	-0.90812900
С	-3.11765300	3.32330700	-0.86658400
С	-4.13325300	3.60365000	0.04022400
С	-4.62995600	2.63797800	0.90804200
С	-4.09297800	1.35488800	0.85401500
С	3.06028500	1.03267500	0.04858100
С	4.09273700	1.35472600	-0.85419600
С	4.62990600	2.63774400	-0.90812500
С	4.13353900	3.60333400	-0.04002300
С	3.11810600	3.32300600	0.86697200
С	2.58264300	2.03895300	0.90841700
F	0.13135800	0.94332000	-1.14695100
F	-0.13121100	0.94387500	1.14581600

F	-4.65156900	4.84746500	0.08073400
F	4.65205900	4.84707600	-0.08041300
Ν	-1.28002000	-0.75218500	-0.09866800
Ν	1.27985800	-0.75231200	0.09829500
Н	-5.47065000	-0.82858100	-0.21009300
Н	-6.39525400	-3.12713200	-0.24899600
Н	-4.89663000	-5.09693600	-0.19548300
Н	-2.43890500	-4.82851800	-0.12678300
Н	-0.00021500	-3.89355100	-0.00012100
Н	2.43883200	-4.82863900	0.12685400
Н	4.89654700	-5.09696000	0.19595000
Н	6.39511100	-3.12711400	0.24954100
Н	5.47041200	-0.82856000	0.21038600
Н	-1.78550000	1.81466400	-1.60379500
Н	-2.75883400	4.10488900	-1.52804600
Н	-5.41399800	2.89745800	1.61162800
Н	-4.45753300	0.59786100	1.54081800
Н	4.45706300	0.59771000	-1.54114000
Н	5.41384200	2.89723100	-1.61182500
Н	2.75957200	4.10453500	1.52864800
Н	1.78588600	1.81441900	1.60421500
Compound 1d			
В	-0.25898100	-0.01142100	0.22870100
С	-2.88797600	0.07400000	0.01726800
С	-3.89647000	1.07699000	-0.17798200
С	-5.29875500	1.00380700	-0.29773900
С	-6.00504600	2.17490700	-0.51288800
С	-5.33870000	3.41892300	-0.61969600
С	-3.95902300	3.50658600	-0.52587700
С	-3.22792200	2.32576200	-0.31079000
С	-1.83100600	2.04885600	-0.18880300
С	-0.74435300	2.90871900	-0.15482500
С	0.55725300	2.47761900	0.05357800
С	1.78936100	3.20130400	0.04794200
С	2.10442800	4.56531200	-0.07818400
С	3.43674200	4.94120200	-0.02106700
С	4.46333800	3.98507500	0.16788900
С	4.16945300	2.63810000	0.29154100
С	2.82092300	2.23533900	0.21697800
С	2.18679500	0.95316800	0.32742400
С	-3.14729500	-1.35732600	0.23830200
С	-2.43369300	-2.35361600	-0.45049700
С	-2.72075100	-3.70137000	-0.22741400

С	-3.73951600	-4.06757600	0.66518700
С	-4.45037400	-3.08053800	1.33787500
С	-4.16647900	-1.72939000	1.13143900
С	-0.97842700	-4.40874900	-1.69853900
С	2.89346000	-0.33114800	0.47644700
С	3.98578000	-0.58078900	-0.36548000
С	4.73347900	-1.75793400	-0.24272200
С	4.39974700	-2.69560300	0.74023400
С	3.31264600	-2.43926100	1.58184200
С	2.55861500	-1.27790100	1.46398500
С	6.55113700	-3.06986000	-1.07063100
F	0.05800100	-0.86727500	-0.81876900
F	-0.31521100	-0.65607700	1.45044000
Ν	-1.67110400	0.67147400	-0.01658200
Ν	0.84547000	1.12537500	0.24790800
0	-2.06261900	-4.72933900	-0.83446300
0	5.76339500	-1.89211300	-1.13075600
Н	-5.81083400	0.04929100	-0.23162000
Н	-7.08665500	2.14214000	-0.60832300
Н	-5.92262300	4.31971600	-0.78858400
Н	-3.45871000	4.46639000	-0.62478400
Н	-0.92120200	3.97042000	-0.29627100
Н	1.32528100	5.31134800	-0.21083600
Н	3.70178900	5.99094700	-0.11447300
Н	5.49578600	4.31858700	0.22145100
Н	4.95751100	1.90863900	0.44872400
Н	-1.65302600	-2.05974100	-1.13437800
Н	-3.94530700	-5.12232800	0.81828300
Н	-5.22949200	-3.36519700	2.03984500
Н	-4.70278600	-0.96837000	1.68803300
Н	-1.32434300	-3.87200500	-2.59181800
Н	-0.54527000	-5.36489500	-1.99801300
Н	-0.22156600	-3.80111900	-1.18824600
Н	4.25558800	0.11778800	-1.14999100
Н	4.96693100	-3.61198700	0.85678300
Н	3.05501600	-3.16655600	2.34702800
Н	1.71658000	-1.10096500	2.11809900
Н	7.06162200	-3.16720100	-0.10302500
Н	7.29658000	-2.97193800	-1.86200900
Н	5.94791500	-3.96968500	-1.25074100
Compound 1e			
B	-0.00004000	0.27664600	-0.00029000
С	-4.39045100	3.22134200	0.24727300
			-

С	-3.23977200	3.43626500	-0.46898500
С	-2.47519600	2.26481800	-0.70580000
С	-3.03783500	1.12227800	-0.17417700
С	-2.58130600	-0.25256200	-0.19778600
С	-3.40994900	-1.42993100	-0.26009000
С	-4.80005700	-1.62098400	-0.39693900
С	-5.29077400	-2.91493700	-0.44951200
С	-4.42339600	-4.02943700	-0.37807100
С	-3.05289000	-3.86211500	-0.26758500
С	-2.54068000	-2.55490500	-0.21534300
С	-1.21138900	-2.03858100	-0.12979300
С	-0.00002900	-2.70077900	-0.00035100
С	1.21126800	-2.03854500	0.12940700
С	2.54056500	-2.55492700	0.21493000
С	3.40984100	-1.42997400	0.26010500
С	2.58123400	-0.25255900	0.19780400
С	-5.41954200	4.22248600	0.67893900
С	3.05274600	-3.86212100	0.26741700
F	-0.15851600	1.04449800	1.14403100
F	0.15839600	1.04391000	-1.14488400
Ν	-1.27888200	-0.64770300	-0.13745400
Ν	1.27879100	-0.64768300	0.13737400
Н	-2.94779800	4.41999300	-0.82309200
Н	-1.54284000	2.24951400	-1.25152300
Н	-5.47624800	-0.77668400	-0.47263500
Н	-6.35937100	-3.07903800	-0.55534200
Н	-4.84100800	-5.03167000	-0.42181700
Н	-2.39180800	-4.72387600	-0.22913400
Н	0.00003000	-3.78598800	-0.00048300
Н	-6.41042200	3.99620200	0.26613500
Н	-5.13156000	5.22027100	0.33369300
Н	-5.52088000	4.26093700	1.77052800
Н	2.39167500	-4.72388500	0.22877700
С	4.79990000	-1.62104200	0.39744100
Н	5.47606800	-0.77673000	0.47316300
С	4.42320900	-4.02946600	0.37842400
Н	4.84078800	-5.03170800	0.42230400
С	5.29059000	-2.91500000	0.45014600
Н	6.35914400	-3.07914500	0.55633500
S	-4.54941900	1.53284500	0.64484300
С	2.47501700	2.26497500	0.70539400
С	3.23989700	3.43628000	0.46882100
Н	1.54242900	2.24986400	1.25072600
С	4.39081500	3.22112200	-0.24697400

Н	2.94791100	4.42007000	0.82273800
С	3.03773800	1.12227300	0.17424100
С	5.41969100	4.22228400	-0.67912500
Н	5.51632100	4.26479700	-1.77101800
Н	5.13478300	5.21918300	-0.32880700
Н	6.41197600	3.99283900	-0.27154900
S	4.54987200	1.53254900	-0.64410400