SUPPORTING INFORMATION

Propylene oxide as dehydrating agent: Potassium carbonate-catalyzed carboxylative cyclization of propylene glycol with CO₂ in polyethylene glycol/CO₂ biphasic system

Zhen-Feng Diao¹, Chun-Xiang Guo¹, Zhi-Hua Zhou¹, Bing Yu¹, Liang-Nian He^{1,2*}

¹ State Key Laboratory and Institute of Elemento-Organic Chemistry, ² Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, P. R. China

General Information.

Alcohols, epoxides and PEGs used in experiments were purchased from Aladdin. PG was dried with Na₂SO₄, then decanted and distilled it under reduced pressure. Additionally, PEGs were dried in vacuum oven at 80 °C for two days and all the catalysts were dried in vacuum conditions at 150 °C for 4 h. CO₂ was commercially available with a purity of 99.99%. Other reagents including diethyl ether, ethyl acetate, petroleum ether, were purchased from Tianjin Guangfu Fine Chemical Research Institute without further purification. GC analyses were performed on Shimadzu GC-2014 equipped with a capillary column (RTX-17 30 m × 0.25 µm) and a flame ionization detector. GC-MS analyses were performed on Shimadzu 2014-QP2010 SE. NMR spectra were recorded on Bruker 400 in CDCl₃. ¹H and ¹³C NMR chemical shifts (δ) were given in ppm relative to CDCl₃ (7.26 ppm and 77.0 ppm).

General Procedure for K₂CO₃-Promoted PC Synthesis from PG and CO₂.

A mixture of PG (2.5 mmol), catalyst (5 mol%), epoxide (5 mmol) and PEG₈₀₀ (0.5 mmol, 0.4 g) were placed in a 25 mL autoclave, equipped with an inner glass tube. 2 MPa of CO₂ was sequentially introduced into the autoclave and heated to the designed reaction temperature. The final pressure at the reaction temperature was regulated by introducing necessary amount of CO₂ and the mixture was stirred continuously for the designed reaction time. Then the reactor was cooled in ice water after the reaction and the CO₂ was released slowly. After depressurization, the products were extracted with diethyl ether, and analyzed by gas chromatograph using biphenyl as internal standard. The products were further identified using GC-MS by comparing retention times and fragmentation patterns with authentic samples and were also isolated by column chromatography on silica gel (200-300 mesh, ethyl acetate and petroleum ether as eluent, V/V = 1/3) and identified by NMR and MS.

4-methyl-1,3-dioxolan-2-one

Colorless oil; ¹H NMR (400 MHz, CDCl₃): $\delta = 4.93 - 4.77$ (m, 1H, CH), 4.55 (t, J = 8.0 Hz, 1H, CH₂), 4.02 (t, J = 7.8 Hz, 1H, CH₂), 1.48 (d, J = 6.2 Hz, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃): $\delta = 155.0$ (C), 73.5 (CH), 70.7 (CH₂), 19.5 (CH₃). EI-MS, m/z (relative int.): 103.14 (26), [M]⁺, 57.03 (100).

1,3-dioxolan-2-one (EC):

Colorless crystal; ¹H NMR (400 MHz, CDCl₃): $\delta = 4.50(s, 4H, CH2)$; ¹³C NMR (101

MHz, CDCl₃): δ = 155.5 (C), 64.6 (CH₂).

