Electronic Supplementary Information High-Performance Nickel Cobalt Sulfides Materials *via* Low-Cost Preparation for Advanced Asymmetric Supercapacitors

Shaolan Wang, Wei Li*, Lipeng Xin, Ming Wu, Xiaojie Lou*

Multi-disciplinary Materials Research Center, Frontier Institute of Science and

Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an

Jiaotong University, Xi'an 710049, China

E-mail addresses: liwei03453@stu.xjtu.edu.cn, xlou03@mail.xjtu.edu.cn

Table S1 Comparisons of electrochemical performance of the Ni-Co-S samples in our work and those in other papers on the nickel cobalt sulfides prepared using

Electrode materials	Preparation	Specific	Rate	Cycling stability
	method	capacitance	capability	
Tube-like NiCo ₂ S ₄ ¹	Hydrothermal	1048 F g ⁻¹ at	50.1% (1-	75.9% (5000 cycle
		3 A g ⁻¹	20 A g ⁻¹)	at 10 A g ⁻¹)
NiCo ₂ S ₄ nanotube	Hydrothermal	14.39 F cm ⁻² at	67.7% (5-150	92.0% (5000 cycle
arrays ²		5 mA cm ⁻²	mA c m ⁻²)	at 50 mA cm ⁻²)
NiCo ₂ S ₄ nanotube	Hydrothermal	738 F g ⁻¹ at	78% (4-	93.4% (4250 cycle
arrays ³		4 A g ⁻¹	32 A g ⁻¹)	at 8 A g ⁻¹)
$Ni_xCo_{1-x}S_2$ particles ⁴	Hydrothermal	1166 F g ⁻¹ at	47.9% (1-	76.5%(1000 cycle
		1 A g ⁻¹	20 A g ⁻¹)	at 5 A g ⁻¹)
CoNi ₂ S ₄ nanoparticles ⁵	Solvothermal	1169 F g ⁻¹ at	60.1% (1-	49.03%(2000 cycle
		1 A g ⁻¹	5 A g ⁻¹)	at 4 A g ⁻¹)
Hierarchically	Solvothermal	1152 F g ⁻¹ at	69% (0.5-	Not Reported
$Ni_{0.48}Co_{0.52}S_{1.097}^{6}$		0.5 A g ⁻¹	20 A g ⁻¹)	
NiCo ₂ S ₄ hollow	Sacrificial	895.2 F g ⁻¹ at	65.4% (1-	85.7% (1500 cycle
nanoprisms ⁷	template	1 A g ⁻¹	20 A g ⁻¹)	at 5 A g ⁻¹)
NiCo ₂ S ₄ nanotubes ⁸	Sacrificial	1093 F g ⁻¹ at	50.3% (0.2-	63% (1000 cycle at
	template	0.2 A g ⁻¹	5 A g ⁻¹)	1 A g ⁻¹)
NiCo ₂ S ₄ hollow	Sacrificial	437 F g ⁻¹ at	53.2% (1-	81% (1000 cycle at
hexagonal nanoplates9	template	1 A g ⁻¹	20 A g ⁻¹)	2 A g ⁻¹)
Our work	Coprecipitation	1259 F g ⁻¹ at	75.07% (1-	90.0% (2000 cycle
		1 A g ⁻¹	50 A g ⁻¹)	at 10 A g ⁻¹)

different preparation methods

Fig.S1 SEM images of the as-prepared NCS samples. (a) NCS-1 ; (b) NCS-2 ; (c) NCS-

3;(d) NCS-5.

Fig.S2 Nyquist plots of the NCS-4 sample measured at amplitude of 5 mV in the frequency region of 100 kHz to 0.01 Hz in the three-electrode cell.

Fig.S3 The CV curves of the pure Co-S phase and the NCS-4 sample at 5 mV s^{-1} in three-electrode cell.

Fig.S4 Electrochemical evaluation of the activated carbon. (a) the CV curves under different scan rates; (b) the GCD curves under different current densities; (c) the specific capacitance versus different current densities.

Fig.S5 The voltage window evaluation of the asymmetric supercapacitor. (a) The CV curves of the activated carbon and NCS-4 at 10 mV s⁻¹ respectively measured in three-electrode cell; (b) the CV curves of the NCS-4//AC asymmetric supercapacitors under different voltages.

Fig.S6 A photographs of the NCS-4//AC asymmetric supercapacitors powered a red

LED. (a) Disconnection; (b) Connection.

References

- 1. M. M. Zhang Y, Yang J, et al., *Nanoscale*, 2014, 6, 9824-9830.
- 2. H. Chen, J. Jiang, L. Zhang, D. Xia, Y. Zhao, D. Guo, T. Qi and H. Wan, *Journal of Power Sources*, 2014, **254**, 249-257.

 J. Pu, T. Wang, H. Wang, Y. Tong, C. Lu, W. Kong and Z. Wang, ChemPlusChem, 2014, 79, 577-583.

4. G. Li and C. Xu, *Carbon*, 2015, **90**, 44-52.

 W. Du, Z. Zhu, Y. Wang, J. Liu, W. Yang, X. Qian and H. Pang, *Rsc Advances*, 2014, 4, 6998.

6. Y. Gao, L. Mi, W. Wei, S. Cui, Z. Zheng, H. Hou and W. Chen, ACS applied materials & interfaces, 2015, 7, 4311-4319.

 L. Yu, L. Zhang, H. B. Wu and X. W. Lou, *Angew Chem Int Ed Engl*, 2014, 53, 3711-3714.

 H. Wan, J. Jiang, J. Yu, K. Xu, L. Miao, L. Zhang, H. Chen and Y. Ruan, *CrystEngComm*, 2013, 15, 7649-7651.

9. J. Pu, F. Cui, S. Chu, T. Wang, E. Sheng and Z. Wang, *ACS Sustainable Chemistry & Engineering*, 2014, **2**, 809-815.