Electronic Supplementary Information (ESI)

α-Fe₂O₃ quantum dots: Low-cost synthesis and photocatalytic oxygen evolution capabilities

Jian Wang, Ning Zhang, Jinzhan Su*, Liejin Guo

International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase

Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), Xi'an, Shaanxi 710049, China.

*Corresponding author.

Dr. Jinzhan Su

Tel.: +86-29-82668296; Fax: +86-29-82669033.

Email: j.su@mail.xjtu.edu.cn

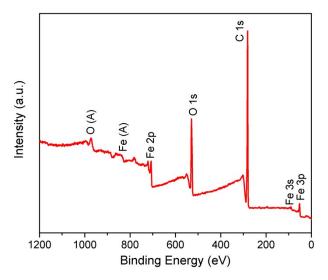


Fig. S1 Survey XPS spectra spectra collected for α -Fe₂O₃ QDs.

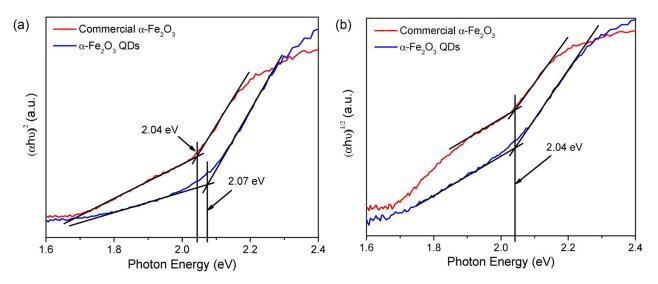


Fig. S2 (a) Direct transition and (b) indirect band gaps for α -Fe₂O₃ QDs and commercial α -Fe₂O₃.

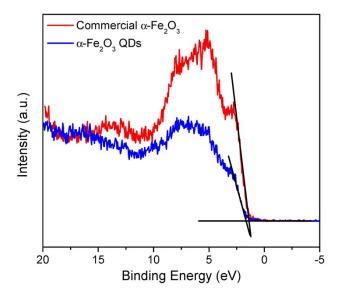


Fig. S3 Valence-band XPS spectra of α-Fe₂O₃ QDs and commercial α-Fe₂O₃

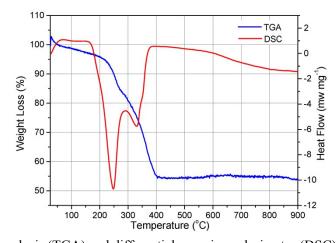


Fig. S4 Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) data of α-Fe₂O₃ QDs.

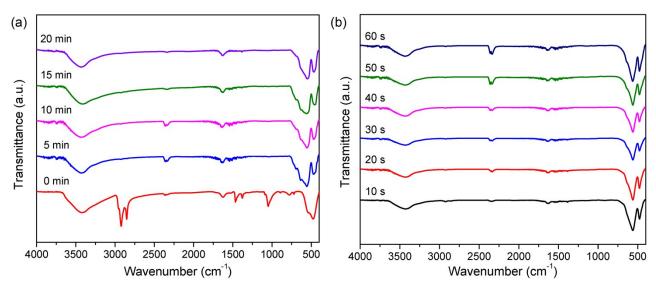


Fig. S5 FTIR spectra of α-Fe₂O₃ QDs annealed at different temperature: (a) 450 °C and (b) 800 °C.

Fig. S6 Photocatalytic O₂ evolution from an aqueous AgNO₃ solution over commercial α -Fe₂O₃ and α -Fe₂O₃ QDs annealed at 450 °C and 800 °C for various time.

FTO	FTO/α-Fe ₂ O ₃	Depletio layer		Helmholtz layer	
Rs					
(R/Ω) (CPE/F)	Rs	R1 CPE1	R2 CPE2	R3 CPE3	
800 °C, 10s	23.33	25.33 5.525×10 ⁻⁵	1680 1.923×10⁵	8.78×10 ⁴ 2.492×10⁵	
800 °C, 60s	25.51	144.3 2.083×10 ⁻⁵	7220 3.664×10 ⁻⁵	809.7 2.398×10 ⁻⁵	
450 °C, 20 min	25.98	43.45 2.855×10 ⁻⁵	4984 4.300×10 ⁻⁵	335.2 2.188×10 ⁻⁵	

Fig. S7 The equivalent circuit model of EIS spectra and fitted values.