Supporting Information

Controllable Synthesis of Three Dimensional Electrodeposited Co-P Nanospheres Arrays as Efficient Electrocatalyst for Overall Water Splitting

Guan-Qun Han^{a, b}, Xiao Li^a, Yan-Ru Liu^a, Bin Dong^{*a, b}, Wen-Hui Hu^a,

Xiao Shang^a, Xin Zhao^a, Yong-Ming Chai^a, Yun-Qi Liu^a, Chen-Guang Liu^{*a}

a State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East

China), Qingdao 266580, PR China

b College of Science, China University of Petroleum (East China), Qingdao 266580,

PR China

^{*} Corresponding author. Email: <u>dongbin@upc.edu.cn (B. Dong), cgliu@upc.edu.cn (C.-G. Liu)</u> Tel: +86-532-86981376, Fax: +86-532-86981787

The electrodeposition curve of Co-P is exhibited in Fig. S1. The electrodeposition electrolyte is composed of 50 mM CoCl₂ $6H_2O$, 0.5 M NaH₂PO₄ H₂O and 0.1 M NaOAc. A CV technique was applied, with the potential region from -0.3 V to -1.0 V vs. Ag/AgCl. CV cycles are 15 and the scan rate is 30 mV s⁻¹. The electrodeposition mechanism of the Co-P film is as follows: $H_2PO_2^- + Co^{2+} + 3 e^- = Co-P + 2 OH^-$. And the photograph of the obtained Co-P film is shown in Fig. S2. The left sample is the electrodeposited Co-P/FTO and the right is the blank FTO. It can be clearly seen that after electrodeposition, black coverage Co-P film was grown on the transparent FTO.

Fig. S1. Cyclic voltammograms during the deposition of the Co-P film using the

potential cycling method.

Fig. S2. Photographs of the Co-P/FTO (left) and blank FTO (right)