Electronic Supplementary Information (ESI) for

Gold nanoparticles encapsulated in hierarchical porous polycarbazole: preparation and application in catalytic reduction

Jing Liu,^{a,b} Qi Chen,*,^a Ya-Nan Sun,^a Meng-Ying Xu,^a Wei Liu,*,^b and Bao-Hang Han*,^a

^a CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China

^b University of Chinese Academy of Sciences, Beijing 100049, China

Tel: +86 10 8254 5576. Email: <u>hanbh@nanoctr.cn</u> Tel: +86 10 8825 6980. Email: <u>weiliu@ucas.ac.cn</u> Tel: +86 10 8254 5708. Email: <u>chenq@nanoctr.cn</u>

Fig. S1. The size distribution of AuNPs in AuNP-1@CPOP.

Fig. S2. TGA curve of AuNP-1@CPOP in the air.

Fig.S3. a) TEM images of AuNP-2-Cz-LA, AuNP-2@CPOP. b) Size distribution of AuNPs in AuNP-2@CPOP.

Fig.S4. Nitrogen adsorption–desorption isotherm of AuNP-2@CPOP at 77 K and the inset PSD profile calculated by NLDFT (the adsorption and desorption branches are labeled with solid and open dot, respectively).

Fig. S5. a) Time-dependent normalized absorption spectra of 4-nitrophenol reduced by NaBH₄ in the presence of AuNP-2@CPOP. b) Plot of $\ln(c_t/c_0)$ against the reaction time *t*.

Fig. S6. The possible schematic mechanism for catalytic reduction of 4-nitrophenol by AuNPs@CPOP in the presence of NaBH₄.

Table S1. Porosity properties of AuNPs@CPOP.

Polymer	$S_{\rm BET}$ ^a	S _{Langmuir} ^b	S _{micro} ^c	V_{total}^{d}	$D_{\rm pore}^{d} D_{\rm pore}^{e}$	
	$(m^2 g^{-1})$	$(m^2 g^{-1})$	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	(nm)	
AuNP-1@CPOP	930	1260	300	0.799	2.0–10.8	
AuNP-2@CPOP	1460	1590	760	0.564	1.7–12.7	

^{*a*} Use the BET method to calculate specific surface area from the nitrogen adsorption– desorption isotherm.

^b Apply the Langmuir equation to calculate specific surface area from the nitrogen adsorption isotherm.

^{*c*} Use the *t*-plot method to calculate micropore surface area from the nitrogen adsorption isotherm.

^{*d*} Total pore volume at $P/P_0 = 0.97$.

^{*e*} Use the nonlocal density function theory (NLDFT) method to calculate data from nitrogen adsorption isotherms and pore diameter is dominant.

Polymer	HAuCl ₄ •4H ₂ O	Cz-LA	NaBH ₄	Size of	$k_{ m app}$	к
	(mg)	(mg)	(mg)	AuNPs (nm)	(×10 ⁻³ s ⁻¹)	$(s^{-1} g^{-1})$
AuNP-1@CPOP	160	28	230	4.5±1.5	4.04	17.57
AuNP-2@CPOP	160	10	25	6.5±1.5	2.31	10.04

Table S2. Synthesis of AuNPs with different sizes and related catalytic behaviors of corresponding polymers in reduction.

Mass Spectrum of Cz-LA.