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S1. Summary of Charge Partitioning Alternatives Evaluated 

 We now briefly summarize some of the alternatives investigated during the course of 

developing the DDEC6 method. This section’s purpose is to point out strategies we tried that did 

not perform well or that did not result in systematic improvements. This information is important 

to avoid duplicative efforts that could result if investigators retried these strategies without 

realizing they have already been tried. 

 Achieving good general purpose charge assignment is a balancing act of competing 

demands: (a) core electrons assigned to the host atom, (b) NACs with good conformational 

transferability, (c) chemically meaningful NACs that describe electron transfer trends (and core 

electron binding energy shifts in some materials), and (d) an efficiently converging polyatomic 

multipole expansion that reproduces the material’s electrostatic potential. To approximately 

correlate with spectroscopic core electron binding energy shifts in transition metal compounds, the 

assigned atomic charge distributions should not be too delocalized. To give NACs that 

approximately reproduce molecular dipole moments and the electrostatic potential surrounding a 

material, the assigned   A Ar  should resemble their spherical averages,   avg

A Ar . To achieve 

good conformational and chemical transferability among similar materials, it is preferable for the 

assigned   A Ar  to resemble real atoms. This can be achieved by optimizing   A Ar  to 

resemble reference ion densities. Therefore, we believe the most straightforward approach to 

achieving an even-tempered charge assignment method involves three components: (a) integrating 

the electron density in the local vicinity of each atomic nucleus (where ‘vicinity’ refers to positions 

close to the volume of space dominated by that atom), (b) optimizing   A Ar  to resemble their 

spherical averages, and (c) optimizing   A Ar  to resemble a set of reference ions. 

 Following these general principles, we tested a large number of new charge assignment 

algorithms. For various reasons, some of these charge assignment algorithms worked much better 

than others. Of all the algorithms we tested, the algorithm with the best overall performance was 

selected to be the DDEC6 method. We now briefly describe the other algorithms we tested. 

 In some schemes, we defined a localized net atomic charge as 

  

  
 

m

A Aloc 3

A A Am

B B

B,L

w r
q z r d r

w r
  


   (S1) 

where  A Aw r  is a DDEC-style atomic weighting factor combining a reference density and 

(optionally) spherical averaging with (optionally) exponential tail constraints. Different values of 

m > 1 were investigated. In each charge partitioning iteration, 
ref

Aq   was set equal to some linear 

combination of 
loc

Aq , Aq  , 
HD

Aq , and (optionally) other factors. The 
loc

Aq  and Aq  were then updated 

in each iteration and iterated to convergence. This type of scheme does not work well, because in 

materials like boron nitride the cation is more diffuse than the anion leading to loc

A Aq q  resulting 
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in increased NAC magnitude when any loc

Aq  is included in ref

Aq . (These larger NAC magnitudes 

degraded the quality of fitting the electrostatic potential in materials like the BN sheet and 

nanotube.) We tried to counterbalance this by mixing in a fraction of HD

Aq  (which usually has 

HD

A Aq q ), but this did not produce consistently good results across a wide range of materials. 

We also tried variations where ref

Aq  was set to whichever was smaller in magnitude, loc

Aq  or Aq . 

We also tried variations in which ref

Aq  was adjusted for each atom until loc

A Aq q . We also tried 

various schemes in which ref

Aq  was adjusted for each atom until loc

Aq  preferably lay between HD

Aq   

and Aq  (or between 0 and Aq ), subject to the condition that ref

Aq  should differ from Aq  by no more 

than a preset allowance (‘trust radius’). In fact, we publically released one such scheme called 

DDEC4 in the CHARGEMOL 3.1 version released on ddec.sourceforge.net September 29, 2014. 

(This version computed the DDEC3 NACs by default, but contained the option to compute DDEC4 

NACs instead.) Nevertheless, our further testing revealed more advantageous approaches, which 

resulted in the DDEC4 algorithm being abandoned. 

 After extensive trials, we finally realized that continuously updating loc

Aq  and ref

Aq  is 

inherently problematic. Specifically, some of the atoms get greedy and continuously take electrons 

from the other atoms. To our surprise, we found the difference  loc

A Aq q  can remain nearly constant 

in some materials (e.g., TiO solid) over a large number of iterations in which Aq  changes by a 

total of >0.5 electrons. This means that a continuously updated 
loc

Aq  does not provide a reliable 

reference value to prevent atoms from becoming greedy. We briefly tried setting 
loc

Aq  equal to the 

Bader charge, but abandoned this strategy due to the presence of non-nuclear attractors in some 

materials.  

 We also tested more aggressive buried tail constraints in which    A A AP r w r  was 

constrained to decay exponentially with increasing Ar  in the atom’s buried tail, where  AP r  was 

a polynomial of Ar . We tested a few different polynomials  AP r  chosen to reproduce the limits 

 AP r 0 1   and    
p

A AP r r    with p > 1. (The DDEC4 method briefly mentioned above 

contained this type of tail constraint.) After extensive testing, we concluded the extra complexity 

of  AP r  did not appreciably improve results across a wide range of materials, so we reverted to 

the simpler strategy of constraining just  A Aw r  to decay exponentially in the atom’s buried tail. 

We also tried various schemes for computing the decay exponents applied to  A Aw r . Ultimately, 

we decided to use a strategy similar to that used in the DDEC3 method plus the addition of a 

constraint to prevent  A Aw r  from becoming too contracted. 
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 We also tested strategies in which ref

Aq  was set equal to a linear combination of  Aq , first _ loc

Aq  

(i.e., loc

Aq  computed in the first charge partitioning iteration) , second_loc

Aq  (i.e., loc

Aq  computed in the 

second charge partitioning iteration),  loc

Aq  (computed in the current charge cycle), HD

Aq , and the 

net atomic charge computed from the iterative-Hirshfeld like partitioning using the conditioned or 

unconditioned charged reference ion. After extensive testing, we could not attribute any tangible 

benefit to the continuous updating of ref

Aq  in each charge cycle, so we finally replaced this kind of 

strategy with a fixed ref

Aq  value. 

 Finally, after deciding to use a fixed ref

Aq  value for all latter charge cycles, we tested various 

schemes for computing the target ref

Aq  value. We tested a scheme similar to the DDEC5 method 

(see description next paragraph), except 1,Stock 1,Loc 1,ref 2,Stock 2,Loc 2,ref

A A A A A Aq ,q ,q ,q ,q ,q   were computed 

based on the conditioned reference densities instead of the unconditioned reference densities. We 

also tried schemes that employed various combinations based on both the conditioned and 

unconditioned reference densities. Using conditioned reference densities to compute 
1,Stock 1,Loc 1,ref 2,Stock 2,Loc 2,ref

A A A A A Aq ,q ,q ,q ,q ,q  worsened the performance. We also tested schemes in which 

the ratio of 1,Stock

Aq  to 1,Loc

Aq  to form 1,ref

Aq  was set different than the ratio of 2,Stock

Aq  to 2,Loc

Aq  to form 

2,ref

Aq . However, we did not notice any appreciable improvements and so decided on the simpler 

scheme of keeping these two ratios the same. We also investigated variations of this ratio before 

settling on the value used in the DDEC5 and DDEC6 methods. 

 One of the schemes we developed with fixed ref

Aq  was called the DDEC5 method. This 

method used        
1

cond wavg

A A A A A Ar r r
 

     with one conditioning step (i.e., c = 1) and 

1/ 3   to yield DDEC5

equiv 1/ 4  . This method used the same formula for  wavg

A Ar  and the same 

reference ion charges (and  cond

A Ar ) as the DDEC6 method. DDEC5 also applied the same 

exponential decay constraints on  A Aw r   in the fourth and later charge cycles as the DDEC6 

method. DDEC5 also applied the constraint 
val

AN 0 . We publically released DDEC5 in the 

CHARGEMOL 3.2.1 version released on ddec.sourceforge.net August 12, 2015. (This version 

computed the DDEC3 NACs by default, but contained the option to compute DDEC5 NACs 

instead.) While the DDEC5 method performed well, it did not have a provably convex 

optimization functional or provably unique solution. We also extensively tested one algorithm with 

the same form as DDEC5, except using two conditioning steps (i.e., c = 2) and 1/ 2   to yield 

equiv 1/ 4  . This algorithm did not converge for the ozone+1 B3LYP system. This led us to 

believe the DDEC5 method might not converge for some materials, due to its optimization 

functional not being provably convex. Desiring a proof of unique convergence, we then developed 

the Convex functional and later the DDEC6 method that have proven unique solutions.  
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 We also tested schemes similar to those described above, but differing in parameter values 

such as the localization exponent m, the precise formulation of the  A Aw r  tail constraints, etc. 

We also tested a few schemes that are quite different from those described above. A few additional 

schemes computed loc

Aq  based on atom-atom overlap populations (computed via various schemes) 

instead of based on Eq. (S1) above. However, these were more computationally expensive than 

Eq. (S1), and we did not discern any performance improvements compared to Eq. (S1). We also 

tried schemes in which the AIM charge distribution  A Ar   was computed by using linear 

combinations of      A Ar w r / W r  and        
m m

A A B B

B,L

r w r / w r   with m > 1 or other 

localization schemes instead of   
m

A Aw r .  

 While this list is not comprehensive of all of the charge partitioning algorithms we tested, 

it provides a general idea of the types of charge partitioning schemes we tested. In the end, we 

settled on the DDEC6 charge partitioning method, because it provided consistently good results 

across a wide range of material types. 

 In addition, we performed a large number of tests regarding optimization of the 

computational cost. In addition to computational tests on various materials, we developed iteration 

calculus with associated algebraic models (solved analytically) and finite difference numerical 

models (solved in spreadsheets) that accurately predicted and described the convergence 

performance of various computational algorithms. We used these mathematical models to derive 

the optimal parameters leading to fast and robust convergence. Using this iteration calculus, we 

designed efficient convergence accelerators (see Section S3.2.3 below) that optimize the 

convergence speed for self-consistent schemes. Our computational tests confirmed the 

theoretically derived optimal parameters and performance improvements associated with these 

convergence accelerators. These improvements ultimately led to the number of required charge 

cycles being reduced from <200 for the DDEC3 method to ~7 for the DDEC6 method. We believe 

that ~7 charge cycles is close to the minimum of what can be used to consistently obtain accurate 

results. 

S2. Integration Routines Employed 

S2.1 General Overview 

 In the limit of an arbitrarily fine grid spacing and sufficiently large cutoff radii, the 

converged DDEC6 properties should be independent of the specific choice of integration routine. 

The choice of integration routine primarily effects the computational efficiency and precision. The 

optimal integration routine depends on the type of input information available. A uniformly spaced 

grid is a convenient choice for quantum chemistry calculations using planewave basis sets, because 

this type of grid naturally lends itself to computing the electron and spin density grids via Fourier 

transform from the planewave coefficients. In general, using a uniformly spaced grid for charge 

partitioning is convenient when the quantum chemistry program (VASP, ONETEP, GPAW, etc.) used 

to generate the electron and spin distributions also uses this same grid type. A uniformly spaced 

grid is not the most computationally efficient choice for quantum chemistry calculations using 
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Gaussian basis sets. For quantum chemistry calculations using Gaussian basis sets, 

computationally efficient atom-centered overlappingS1 and non-overlappingS2 grid types have been 

extensively described in the literature. Nevertheless, we used a uniformly spaced grid for all 

DDEC6 calculations described in this work. This was motivated by the fact that atom-centered 

overlapping and non-overlapping grids have not yet been programmed into the CHARGEMOL 

program used to compute the DDEC6 properties. 

 When using uniformly spaced grids, it is sometimes best to integrate core-like and valence-

like electron distributions separately. Here, the term core-like electron distribution refers to an 

electron distribution concentrated near atomic nuclei. Core-like electron distributions can have 

extremely high density values near atomic nuclei. The term valence-like electron distribution refers 

to an electron distribution that has a significant fraction of its electrons in the atomic valence 

regions without extreme density spikes near the atomic nuclei. Unless special precautions are 

taken, the extreme density spikes near atomic nuclei in core-like electron distributions can lead to 

inaccurate integration of the number of core-like electrons. Using an extremely fine uniform grid 

to integrate the core-like electron distribution is one possible strategy, but this strategy would be 

too computationally expensive and impractical. Instead, we integrate the core-like and valence-

like electron distributions separately. Then we correct the core-like density grid to force it to 

integrate to the correct number of core-like electrons. With this correction in place, accurate 

integrations over the core-like density grid can be performed. The following Section S2.2 describes 

details of this core grid correction. 

 During DDEC analysis of VASP PAW quantum chemistry calculations, the precision of 

integrating valence-like electron distributions was improved using the valence occupancy 

correction and all-electron spin density approximation described in the Supporting Information 

Section E (pages S9–S10) of Manz and Sholl.S3 

 During DDEC analysis of GAUSSIAN 09 generated wfx files, the precision of integrating 

electron and spin distributions and multipole moments was improved using the valence occupancy 

corrections described in the Supporting Information Section F (pages S10–S11) of Manz and 

Sholl.S3 In the present work, we made two additional improvements in computational efficiency. 

First additional improvement in computational efficiency: Each Gaussian basis set product has the 

general form        1 2 3 2

0 0 0 0X X Y Y Z Z exp r r     . Here,  0 0 0 0r X ,Y ,Z  represents 

the center of the Gaussian basis set product. The powers  1 2 3, ,  are non-negative integers. To 

improve computational efficiency, we sorted all Gaussian basis set products into blocks where 

Gaussian basis set products in each block shared the same   and 0r . The  2

0exp r r  ,

 0X X ,  0Y Y , and  0Z Z  terms were computed only once for each block at each grid 

point. This produced computational savings by avoiding recomputing these terms for every 

Gaussian basis set product within each block. Second additional improvement in computational 

efficiency: We added a grid interpolation scheme to increase the computational efficiency of 

generating valence, core, and spin density grids from Gaussian basis set coefficients. This grid 
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interpolation decreases the computational cost by a factor of approximately five or more with 

negligible impact on the computational precision. Specifically, we used a set of grids explicitly 

including every nth grid point along each lattice direction, with n = 1 (finest), 2, 3, 4, 6, 8, or 12 

(coarsest). The finest grid (i.e., n = 1) had a uniform spacing of ~0.14 bohr. Each Gaussian basis 

set product was assigned to one of these grids according to how diffuse it was. Specifically, a 

Gaussian basis set product proportional to  2

0exp r r   was assigned to grids according to the 

following scheme:  

(1) If  > 5 (atomic units), the Gaussian basis set product was assigned to the core-like density 

grid with analytic integration to compute the occupancy corrections. This grid had a 

uniform spacing of ~0.14 bohr. 

(2) If 5 0.4    (atomic units), the Gaussian basis set product was assigned to the n=1 

valence density grid. This grid had a uniform spacing of ~0.14 bohr. 

(3) If 
 

22

i i 1

0.16 0.16

n n 

     (atomic units), the Gaussian basis set product was assigned to the 

in  valence density grid, where in 2,3,4,6,8 . The Gaussian basis set product was 

assigned to the n=12 (coarsest) valence density grid if  0.16 /144    (atomic units). This 

scheme scales the coarseness of the grid in the exact same manner that   scales. This 

means the ‘relative coarseness’ of the grid remains approximately constant independent of 

the   value. 

The valence and spin density contributions for each Gaussian basis set product were computed on 

the corresponding assigned nth grid. For each Gaussian basis set product, a renormalization factor 

of up to ±5% was applied to ensure it integrated to the proper value over the grid.S3 After all 

Gaussian basis set products were computed over the corresponding grids, the coarser grids were 

interpolated back onto the finer grids in the following order: (a) the n = 12 grid was interpolated 

back onto the n = 6 grid, (b) the n = 8 grid was interpolated back onto the n = 4 grid, (c) the n = 6 

grid was interpolated back onto the n = 3 grid, (d) the n = 4 grid was interpolated back onto the n 

= 2 grid, (e) the n = 3 grid was interpolated back onto the n = 1 grid, and (f) the n = 2 grid was 

interpolated back onto the n = 1 grid. This has the effect of interpolating the n = 12 grid onto the 

n = 1 grid by first interpolating the n = 12 grid onto the n = 6 grid, then interpolating the n = 6 grid 

onto the n = 3 grid, and finally interpolating the n = 3 grid onto the n = 1 grid. By the sequence of 

steps (a) to (f), all of the coarser grids were finally interpolated onto the n = 1 grid. A linear 

interpolation was used in each of steps (a) to (f). Such a linear interpolation yields the same integral 

of each Gaussian basis product over the coarser and finer grids. 

 In this work, we used a 5 Å cutoff radius for  A Aw r , which means  A Ar 0   for Ar > 5 

Å. For all charge distributions depending only on Ar  (i.e., spherically symmetric distributions), we 

used 100 radial shells evenly spaced between 0 and 5 Å. 
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S2.2 Core Electron Partitioning with Core Grid Correction 

S2.2.1 Overview 

 Core electron partitioning with core grid correction assigns core-like electron distributions, 

  core

A Ar , that integrate to yield the exact analytic number of core-like electrons for each atom 

 core 3 core

A A A Ar d r N  . (S2) 

Here, core

AN  refers to the exact analytic number of core-like electrons that have been included in 

the core-like electron distribution,  core r . In general, this depends upon the specific density grid 

setups not the chemical states of atoms. For example, a Mg atom could have core

AN  set to 0, 2, 10, 

or other values, depending on how many core-like electrons were written to the core density grid. 

 Core grid correction is not necessary to compute accurate NACs. (When comparing NACs 

computed with to without this core grid correction, the NACs typically change by up to ~0.002 e 

due to integration artifacts arising from the finite grid spacing.) For example, the paper introducing 

the DDEC3 method did not use core grid correction.S3 The primary reason for including core grid 

correction is that it allows   A Ar  to be integrated to yield NA without worrying about errors in 

the integrated number of core-like electrons. This is critical for evaluating quantities that are 

nonlinear functionals of   A Ar . Bond orders quantify the number of electrons exchanged 

between two atoms. Because the exchange interaction is a nonlinear functional of the electron 

density, integrals for computing bond orders must be based on  A Ar  not just the atomic valence 

density  val

A Ar . This requires that  A Ar  integrate to the correct number of electrons—hence 

the need for a core grid correction. 

 If an atomic nucleus falls directly on a grid point, the density at that grid point may be very 

high. During integration, the number of electrons contributed by a pixel is calculated as the electron 

density at that pixel times the pixel volume. For a pixel centered on an atomic nucleus, the average 

electron density in the volume occupied by the pixel is less than the electron density exactly at the 

nuclear position. Therefore, grid points centered directly at atomic nuclei will produce integration 

errors if the density is taken to be that at the nuclear position. This error can be removed by 

estimating and using the average density for each pixel volume in place of the point density at the 

nuclear position. 

S2.2.2 Design Criteria 

a) The core-like density assigned to each atom should integrate to the correct number of core-like 

electrons within a specified convergence tolerance (e.g., 10-5 e). For example, if a calculation 

is performed with 2 core electrons in Mg, the assigned core density for this atom should 

integrate to between 1.99999 and 2.00001 e. This is done by correcting the core density for 

pixels with the highest core density (i.e., the nuclear cusps). 

b) The core grid correction should never produce a negative core-like electron density for any 

grid point. 
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c) For a particular atom, the core grid correction should not change the relative ordering of grid 

point core-like densities. Specifically, if grid point 1 contains a higher core-like density 

assigned to atom A than grid point 2, then after the correction is applied this should still be the 

case. 

d) Because nuclear cusps contribute most of the integration error, the core grid correction should 

be localized to those grid points with the highest core-like densities (i.e., those closest to atomic 

nuclei). 

e) The core grid correction should not interfere with the exponential decay constraint applied to 

the   core

A Aw r . Recall that atomic core densities decay at least as fast as exp(-2rA) where rA 

is in bohr. This constraint is applied during the core partitioning. Consider two grid points near 

nucleus A such that grid point 1 is closer to nucleus A than grid point 2. Then, 

      core core

A 2 A 1 2 1w r w r exp 2 r r      (S3) 

where 1r  and 2r  are the distances from grid points 1 and 2, respectively, to nucleus A. 

S2.2.3 Iterative Algorithm 

 Two separate sets of iterations are performed: (i) a first set of iterations to determine a pre-

corrected  core

A Aw r  and (ii) a second set of iterations to correct the core-like electron density grid 

to yield the correct number of core-like electrons for each atom. 

S2.2.3.1 Iterations to determine a pre-corrected  core

A Aw r  

 For atoms having no core-like electrons assigned to the core grid (e.g., if core

AN  < 10-10), the 

assigned  core

A Aw r  and  core,avg

A Ar  are set to zero. For all remaining atoms, the following 

sequence of steps is performed starting with the initial estimate    core ref ref

A A A A Aw r r ,q 0   .  

a) For each grid point: 

   core core

A A

A,L

W r w r  (S4) 

b) The spherical average core density is computed for each atom, 

 
 

 
 

A

core

A Acore,avg core

A A core

r

w r
r r

W r
     (S5) 

c) If  core,avg 3

A A Ar d r changes between successive core iterations are 510 e for every atom and 

at least five prior core iterations have been performed, the calculation is considered converged 

and exits. Otherwise, the calculation continues. 

d) Starting with    core core,avg

A A A Aw r r  as the initial guess,  core

A Aw r  is updated to satisfy 

constraint (S3) by recursively setting 

        core core core

A A A A A A A Aw r min w r ,w r r exp 2 r      (S6) 

beginning with the second radial shell and continuing outward to the last radial shell. The 

calculation then repeats the sequence of steps b) to d) until it converges and exits in step c). 
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S2.2.3.2 Iterations to correct the core density grid 

 For atoms having no core-like electrons assigned to the core grid (e.g., if core

AN  < 10-10), the 

assigned  core

A Aw r  and  core,avg

A Ar  are set to zero. For all remaining atoms, the following 

sequence of steps is performed to correct the core grid. 

a) In each correction iteration i, a real variable AK  is computed for each atom using the following 

equations 

 
 

 
 

core

A Acore corei
A A corei i

i

w r
r r

W r
     (S7) 

 

     

core core 3

A A A Ai
A 3 2i

core 3 core

A A A Ai i

N r d r 0.25
K min ,

r d r max

  
   

   
   
  




  (S8) 

where  core

A i
max  is the largest value of  core

A A i
r  over the set of all grid points. 

b)  core r  is updated by 

 
 

  

core

A Acore i
A A i 1 2

core

A A Ai i

r
r

1 2K r



 

 

 (S9) 

   core core

A Ai 1 i 1
A,L

r r
 

   .  (S10) 

c)  core,avg

A Ar  is updated by 

 
 

 
 

A

core

A Acore,avg corei
A A corei 1 i 1

i r

w r
r r

W r 
    (S11) 

d) If  core core,avg 3 5

A A A Ai 1
N r d r 10


    for every atom, the calculation is considered converged 

and exits. Otherwise, the calculation continues. 

e) Starting with    core core,avg

A A A Ai 1 i 1
w r r

 
   as the initial guess,  core

A A i 1
w r


 is updated to satisfy 

constraint (S3) by recursively setting 

        core core core

A A A A A A Ai 1 i 1 i 1
w r min w r , w r exp 2 r

  
     (S12) 

beginning with the second radial shell and continuing outward to the last radial shell. 

f)  coreW r  is updated: 

   core core

A Ai 1 i 1
A,L

W r w r
 
  (S13) 
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The calculation then repeats the sequence of steps a) to f) until it converges and exits in step 

d). 

S2.2.4 Proof this Iterative Algorithm Satisfies the Design Criteria 

a) The iterative scheme converges to the desired solution. Proof: Near the solution, we have  

 

  

core core 3

A A A Ai
A 3i

core 3

A A Ai

N r d r
K

r d r

 







 and   

2
core

A A Ai i
K r 1  (S14) 

Therefore, we can expand Eq. (S9) as a Taylor series to give 

   
 

  
  

core core 3
3A A A Acore core corei

A A A A A A3i 1 i icore 3

A A Ai

N r d r
r r r residual

r d r


  
   

       
  
  




 (S15) 

Integrating Eq. (S15) yields 

 core 3 core

A A A Ai 1
r d r N residual


    (S16) 

which shows  core 3

A A Ai 1
r d r


  converges to core

AN . Combining Eqs. (S9) and (S16) gives 

 

  

core

A A 3 corei
A A

2
core

A A Ai i

r
d r N residual

1 2K r

 
 

  
  
 

  (S17) 

which shows the left side of Eq. (S17) converges to 
core

AN . This can only be true if 
A

i
limK 0




, because otherwise  core

A A i
r  would increase (

A
i
limK 0


 ) or decrease (
A

i
limK 0


 ) without 

bound. With Eq. (S8) this means 

 core 3 core

A A A Aii
lim r d r N


   (S18) 

   
A

core core

A A A A iK 0
i

lim r r

    (S19) 

so the iterative process converges to the desired solution. 

b) The corrected core density is nonnegative at every grid point. Proof: The minimum of the 

factor   
2

core

A A Ai i
1 2K r   occurs when A i

K 0  and for the grid point    core

A A i
r max . 

From Eq. (S8), it follows   
2

core

A A Ai i
K r 0.25  . Therefore,  

  
2

core

A A Ai i
1 2K r 1/ 2   . Examining Eq. (S9), this means  core

A A i 1
r 0


  . 

c) For a particular atom, the correction does not change the relative ordering of grid point core 

densities. Proof: Consider the function 
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 
2

s
s

1 2Ks
 


   (S20) 

which has the derivative 

 
3/2

2

d 1

ds 1 2Ks





  (S21) 

 s  is a monotonically increasing function of s over the range 2Ks 0.5 . Because Eq. (S9) 

has the functional form  s , the relative ordering of grid point core densities is preserved for 

each atom. 

d) The correction is localized to those grid points with the highest core densities (i.e., those closest 

to atomic nuclei). Proof: Combining  

   core core

A Ai i
A,L

r r     (S22) 

with Eq. (S10) gives 

     
  

core core core

A Ai 1 i i 2
coreA,L

A A Ai i

1
r r r 1

1 2K r


 
 

     
  
 

  (S23) 

Consider the function 

   
2

1
g s s 1 s s

1 2Ks

 
     

 
   (S24) 

which has the derivative 

 
3/2

2

dg 1
1

ds 1 2Ks
 


.  (S25) 

dg
0

ds
  if and only if K = 0 or s=0. Moreover,  g s  is a monotonically increasing (when K > 

0) or decreasing (when K < 0) function of s  over the range 2Ks 0.5 . For small s,  g s  

expands a Taylor series to 

 
 

3 3

2

max

0.25
g s Ks residual s residual

s
     (S26) 

The inequality on the right-most side of Eq. (S26) arises from Eq. (S8). Due to the cubic 

dependence of  g s  on s for small s, the points with largest  core

A A i
r  dominate the core 

correction for atom A. These points are typically located close to nucleus A. 

e) The correction does not interfere with the exponential decay constraint applied to   core

A Aw r

. Consider two grid points near nucleus A such that grid point 1 is closer to nucleus A than grid 

point 2. From Eq. (S9),  
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 

 

 

 

  
  

2
corecore core

A A 2A 1 A 1 i ii 1 i

2core core
core

A 2 A 2i 1 i A A 1i i

1 2K rr r 1
ln ln ln

2r r 1 2K r





             
             

 (S27) 

case 1: AK 0 . In this case, the last term in Eq. (S27) increases 
 

 

core

A 1 i 1

core

A 2 i 1

r
ln

r





 
 
 
 

 so the core 

density increase performed during the core grid correction does not cause 
 

 

core

A 1 i 1

core

A 2 i 1

r
ln

r





 
 
 
 

 to 

be   2 1exp 2 r r  . 

case 2: AK 0 . This occurs when the core density grid assigns too much core density to atom 

A. This can be due to a nucleus falling directly on a grid point, in which case the core density 

near this nucleus is too high and Eq. (S27) appropriately decreases it. Alternatively, this case 

can arise if the assigned core density is too diffuse for any reason. The lowering of core density 

near this nucleus together with constraint (S3) corrects the problem of too much core density 

being assigned to this atom. 

S2.2.5 What features cause this scheme to converge rapidly and robustly? 

a) The correction is localized to regions with highest  core

A Ar  where typically 

   A Aw r W r 1 . This makes corrections for different atoms almost independent of each 

other. 

b) The relative ordering of core density values for an atom is preserved. This ensures a smooth 

behavior.  

c) Convergence is rapid near the solution, as evidenced by the Taylor series expansion in Eqs. 

(S15) and (S16). 

d) Examining Eqs. (S8) and (S9), the density changes are bounded by 

 

 

core

A A i 1

core

A A i

r1
2

r3




 


 (S28) 

The extreme values occur for the grid point corresponding to  core

A i
max  when 

  
3

core 3

A A Ai
r d r  is dominated by  core

A i
max  such that 

     
3 3

core 3 core

A A A A pixeli i
r d r max V      (where pixelV  is the pixel volume) and under the 

condition that  core core 3

A A A Ai
N r d r   is large. Under these conditions, AK 0  gives the 

limiting behavior 
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   
   

    
    

   

core

A Acore i
A A i 1 2

core

A A2 icore

A A i

core

A A i

r max
r max

0.25
1 2 r max

r max

2 r max




 

 



 

. (S29) 

Under these conditions, 
AK 0  gives the limiting behavior 

   
   

     
    

    

   

core

A Acore i
A A i 1

core core
2A A A pixeli core

A A3 icore

A A pixeli

core

A A i

r max
r max

N r max V
1 2 r max

r max V

r max

3




 

 
 






(S30) 

when     core core

A A pixel Ai
r max V N . 

e) Noting that  
20

2 1024 , this means about 20 iterations are required to increase a grid point 

density by a factor of 103. Noting that  
13

3 1262.665 , this means about 13 iterations are 

required to decrease a grid point density by a factor of 103. Because the approach to 

convergence is smooth and the core density assigned to each grid point is never off by more 

than a factor of 106, this means convergence is always achieved in fewer than 40 iterations. In 

practice, convergence is nearly always achieved in fewer than 20 iterations. 

S3. Computational Algorithm for Convex Functional 

S3.1 Iterative Algorithm 

 The complex functional was optimized using the following procedure. First, 
ref

Aq  was 

computed in the first two charge cycles as described in Section 3.2 of the main text. Second, the 

conditioned reference ion density,  cond

A Ar , was computed in the third charge cycle as described 

in Section 3.3 of the main text.  

 The fourth charge cycle used the following procedure to compute the fixed reference 

density 

   fixed_ ref

A A A Ar H r   (S31) 

in the Convex functional. First, we computed 

       
A

cond cond

A A A A r
r r r / r      . (S32) 

Then,  A Ar  is reshaped to form  A AG r  exactly as described in item i) in Section 3.4 of the 

main text. Then,  A AG r  is reshaped to form  A AH r  exactly as described in item ii) of Section 

3.4 of the main text.  
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 The fifth (i.e., i 5 ) and latter charge cycles form an iterative process to achieve a self-

consistent solution. The fifth charge cycle starts with the following initial estimates: 

   5 fixed_ ref

A A A Aw r r , 5

A 0  , and 5

AC 1 . These are refined to self-consistency using the 

following sequence of steps in the fifth and latter charge cycles: 

1. In the first loop over grid points and atoms, the following sum is computed at each grid 

point: 

   B B

B,L

W r w r    (S33) 

2. In the second loop over grid points and atoms, the following quantities are computed: 

       A A A Ar w r r W r    (S34) 

   
A

avg

A A A A r
r r     (S35) 

  3

A A A AN r d r    (S36) 

 

 

 

 
 A A A A 3

A A A A

w r w r
u 2 1 1 r d r

W r W r

   
         

   
   (S37) 

All of these quantities except   A Ar  are stored. 

3. If the AN  and   avg

A Ar  changes between successive charge cycles were less than 10-5e 

and 10-5e/bohr3, respectively, for each atom two consecutive times in a row then the 

calculation is considered converged. Starting with the 10th charge cycle, the calculation 

breaks at this point if it is considered converged. If it is not converged or the charge cycle 

is less than 10, the calculation proceeds to # 4 below. 

4. At the end of the ith charge cycle  i 5  , the updated atomic weighting factors are given 

by 

     
i 1
Ai 1 i fixed _ ref avg

A A A A A A Aw r C e r r
      (S38) 

 where 

   i 1 i val

A A A Acons tmax 0, N / u        (S39) 

if 
7

Au 10 , and 
i 1

A 0   if 
7

Au 10 . The constant appearing in Eq. (S39) affects only 

the convergence speed and robustness without affecting the converged solution. The 

approximately optimal value of 32 4  is derived in Section S3.2.2 below. The 
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convergence accelerator, i

AC , minimizes the number of required charge cycles without 

changing the converged solution. For i 6 , 

   

         

i 1
A

i 1
A

fixed _ ref avg

A A A Ai

fixed _ ref avg i

A A A A A A

e r r
C

2 2 e r r 2 1 w r









 


    
.  (S40) 

As explained in Section S3.2 below, this form of the convergence accelerator maximizes 

the convergence speed. The convergence accelerator equals one when the calculation 

converges.  

 After generating  i 1

A Aw r  for each atom, the calculation returns to step #1 above and starts 

the next (i.e.,  i 1 ) charge cycle using  i 1

A Aw r  as the new estimate for  A Aw r  in Eq. (S33). 

This iterative process is continued until the calculation satisfies the convergence criteria and breaks 

in step #3 above.  

 We now show that convergence of  AN  and    avg

A Ar  can occur only if  A  are also 

converged. Following Manz and Sholl,S3 we define 

 

 

   

  
 A A A A B B 3A

AB AB 2
LB

w r w r w rN
J r d r

W r W r

 
     
 
 

 .  (S41) 

The 
L

 in Eq. (S41) accounts for periodic images (if any) of atom B. For a process in which 

  avg

A Ar  are converged, changes in   A Aw r  can arise only from changes in  A . For such a 

process,  

A A A AB B

A A B

d dN d J d       (S42) 

Inserting Eq. (S41) into (S42) and rearranging gives 

 
   

  
 

2 A A B B 3

A A A B 2
A A B,L

w r w r1
d dN d d r d r 0

2 W r

  
        
  

  

   . (S43) 

If  AN  are converged, then both sides of Eq. (S43) are identically zero. For every pair of atoms 

A and B, this requires either  
2

A Bd d 0     or else the AB overlap integral in Eq. (S43) is zero. 

Thus, for any sets of atoms with non-zero overlaps,  Ad 0   when  AdN 0 . For an atom 

without any overlaps (i.e., isolated atomic ion limit), Au 0  and the converged  A Ar  is 

independent of A . Therefore, when uA is negligible (e.g., 
7

Au 10 ) we set A 0  . For all other 

atoms,  
2

A Bd d 0     when  AdN 0 . Therefore,  AN  cannot be converged between 
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successive charge cycles unless  A  are converged between successive charge cycles. Therefore, 

  A Aw r  are converged in the Convex functional method if and only if  AN  and    avg

A Ar  

are converged. 

S3.2 Derivation of Optimal Convergence Parameters 

S3.2.1 Derivation of the form of uA in Eq. (S37) 

 The careful reader will observe the quantity uA appearing in Eq. (S37) for the Convex 

functional has a different form than the quantity uA appearing in Eq. (77) of the main text for the 

DDEC6 method. During each DDEC6 charge partitioning step,  A AH r  is computed first and then 

A  is adjusted if necessary; that is, A  is optimized while keeping  A AH r  constant. In contrast, 

when optimizing the Convex functional, A  affects  avg

A Ar  which in turn affects  A Aw r ; that 

is, A  is updated while varying  avg

A Ar .  For generality, we consider an atomic weighting factor 

of the form 

       A
1

convex fixed _ ref avg

A A A A A Aw r e r r
 


    (S44) 

where 0 1    . Note that 1/ 2   for the Convex functional described in Section S3.1 above. 

Inserting Eq. (S44) into Eq. (46) of the main text and rearranging yields 

        A

A

1/
avg fixed _ ref

A A A A r
r e r r / W r


 

    .  (S45) 

Case 1: When    W r r , changes in  convex

A Aw r  tend to be absorbed by the other atoms. In 

this case, taking the partial derivative of Eq. (S45) yields 

   

B A

avg avg

A A A A

A

r r



  
 

  
  (S46) 

which combined with Eq. (S44) yields 

   

B A

convex convex

A A A A

A

w r w r



 
 

  
. (S47) 

Case 2: At the other extreme, where changes in  convex

A Aw r  are not absorbed by the other atoms, 

then 

     

   

 

 

 

B A

3A
A A A

A A

A A A A 3

A

A

N
w r r W r d r

w r r w r
1 d r

W r W r



  
  

  

  
     





. (S48) 

Taking the partial derivative of Eq. (S44) with the help of Eq. (S45) yields 

 

B A

convexconvex
A AA

A

w rw



 
 

  
.  (S49) 
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Substituting Eq. (S49) into (S48) gives 

 
 

 

 

 
B A

convex

A Aconvex 3A
A A A

A

r w rN 1
w r 1 d r

W r W r


  
        

 . (S50) 

Cases 1 and 2 can be combined by noting that case 1 dominates when    convex

A Aw r W r , and 

case 2 dominates when    convex

A Aw r W r . Assuming a linear interpolation where 

 

 

convex

A Aw r
1

W r

 
  

 
 is the fraction assigned to case 1 and 

 

 

convex

A Aw r

W r
 is the fraction assigned to 

case 2 yields: 

 
 

 

 

 

 

 
B A

convex convex

A A A Aconvex 3A
A A A A

A

r w r w rN 1
u w r 1 1 d r

W r W r W r


   
             

 . (S51) 

The safest approach corresponds to setting uA to its approximate upper bound. (This corresponds 

to estimating A  changes conservatively to minimize overshoot.) This explains the basis for the 

form of uA appearing in Eq. (S37). 

S3.2.2 Derivation of the constant value in Eq. (S39) 

 To derive this constant, we construct a convergence model in which the error at charge 

cycle i is characterized by  

 val

i A i
min N ,0    (S52) 

where i   is some positive number. (Note that i  has a different value for each atom.) 

Substituting Eq. (S52) into (S39) yields 
i 1 i

A A i Acons t / u    . (S53) 

During charge cycle i+1, this change in A  impacts  A Aw r  only through the Ae


  prefactor and 

not through the  avg

A Ar   term, because the  avg

A Ar  term will be impacted only during the i+2 

and subsequent charge cycles. From Eq. (S44), the change in  convex

A Aw r  at constant  avg

A Ar  is 

 

 

 
avg

A B AA

convex

A A convex

A A

A r ,

w r
w r

 

 
 

 
. (S54) 

Comparing Eqs. (S54) and (S47) gives 

 

 

 

avg
A B A B AA

convex convex

A A A A

A Ar ,

w r w r

   

    
    

    
. (S55) 

 Eq. (S55) therefore implies that within overlapping atomic regions 

 avg
A B A B AA

val val

A A
A

A Ar ,

N N
u

   

    
      

    
 (S56) 

where we have used the definition 
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B A

val

A
A

A

N
u



 
  

 
. (S57) 

Rearranging Eq. (S56) gives the change in val

AN   between successive iterations due to changes in 

A   made during the present iteration 

 

   
avg

A B AA

val
val,i 1 val,i i 1 i i 1 iA
A A A A A A A

A r ,

N
N N u



  

 

 
          

 
 (S58) 

where  val,i

AN  is the valence population obtained by using   i

A Aw r  as the atomic weighting 

factors. 

 Combining Eqs. (S53) and (S58), the impact of the A  change felt during the i+1 charge 

cycle is 

 

 
avg

A B AA

i 1 iA
A A i

A r ,

cons t
N





 

 
      





.  (S59) 

Thus, neglecting the  avg

A Ar  changes, the error during charge cycle i+1 will be 

 i 1 i ons t1 c     .  (S60) 

Applying once more, 

   
2

i 2 i 1 icons t1 1 cons t          . (S61) 

Combining Eqs. (S53) with (S60) and (S61) yields 

 i 2 i 1

A A i Acons t cons / ut1           (S62) 

 
2i 3 i 2

A A i Acons t cons t1 / u         . (S63) 

Therefore, the sum of A   changes over three successive charge cycles is 

   
2i 3 i

A A i Acons t cons t cons1 t1 1 / u            
 

   . (S64) 

 The key to deriving an appropriate value for the constant is to note that eventually the 

 avg

A Ar  changes will kick in and affect  A Aw r . A reasonable value of the constant will 

correspond to the sum of A   changes over three successive charge cycles not overshooting the 

eventual 
val

AN  changes even when including the eventual effects of changing  avg

A Ar  on  A Aw r

. Since the eventual 
val

AN  change is uA times the A  change, the non-overshoot condition derived 

from Eq. (S64) is 

   
2

1 1cons t cons t c s 1n 1o t        
 

. (S65) 

The approximately optimal constant corresponds to the equality condition. Solving Eq. (S65) 

yields 
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3
3 2

1 1 1
const   

  
.  (S66) 

For 1/ 2   , we have 3const 2 4 0.41259...    

 We performed computational tests (using model systems in spreadsheet) with different   

values and different constant values, which verified Eq. (S66) yields nearly optimal convergence 

performance. With the constant value from Eq. (S66), the system converges rapidly with highly 

damped overshoot if the val

AN 0   constraint is binding. Using 1/ 2  , 

3const 2 4 0.41259...   , and the convergence accelerator described in Section S3.2.3, 

convergence to 10-5 electrons is achieved in approximately 20 total charge cycles for the Convex 

functional when the val

AN 0  constraint is binding and in approximately 14 charge cycles when 

the val

AN 0  constraint is not binding. 

S3.2.3 Derivation of the optimal convergence accelerator 

 When using an atomic weighting factor of the form shown in Eq. (S44), the spherical 

average atomic density,  avg

A Ar , is computed based on the  A Aw r  that used the prior  avg

A Ar . 

This causes the situation that if the estimate for  avg

A Ar  in charge cycle i is too large (small), the 

new estimate for  avg

A Ar  in charge cycle i+1 will also be too large (small). In general, therefore, 

it will take many charge cycles to work off errors in the estimated   avg

A Ar . The higher the 

proportion of spherical averaging (i.e., the smaller the   value) in  A Aw r , the more pronounced 

this problem will be. 

 This problem can be solved using a convergence accelerator. A convergence accelerator 

causes changes in the estimated   avg

A Ar  to take effect in fewer charge cycles, thereby allowing 

the calculation to be converged in fewer charge cycles. All feasible functional forms of a 

convergence accelerator become linear as the change to   avg

A Ar  becomes relatively small. 

Therefore, we choose the linear form 

        i 1 i i i 1

A A A A A A A Aw r r m r r       (S67) 

where m is a constant and  

       
 i 1

A

1
i fixed _ ref avg

A A A A A A i
r e r r

 


    . (S68) 

 We begin by defining a set of variables that quantify the approach to convergence: 

      i avg avg

A A A A A Ai converged
y1 r ln r r    (S69)  

      i i converged

A A A A A Ay2 r ln w r w r  (S70) 
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where  avg

A A i
r  is the value of  avg

A Ar  computed during charge cycle i, and  avg

A A converged
r  and 

 converged

A Aw r  are the final converged values of  avg

A Ar  and  A Aw r , respectively. Combining 

Eqs. (S68) and (S69) yields 

          i converged i i 1 converged

A A A A A A A Aln r r 1 y1 r        .    (S71) 

According to Eq. (S67), 

   converged converged

A A A Ar w r  .   (S72) 

In regions where atom-atom overlaps are significant (i.e.,    A Aw r W r ), the spherical average 

computed during charge cycle i (i.e.,  avg

A A i
r ) is proportional to  i

A Aw r : 

  
  

avg

A A i

i

A A

ln r
1

ln w r

 



 . (S73) 

From Eq. (S73), it directly follows that 

     i i i

A A A A A Ay1 r y2 r r      (S74) 

where  i

A Ar  quantifies the approach to convergence. 

 Computational tests on real systems studied with the CHARGEMOL program, as well as 

numerical model systems studied in spreadsheet, showed that convergence in the fewest number 

of charge cycles is achieved when the constant m is set to the largest value giving non-oscillatory 

convergence. For steady non-oscillatory convergence, the errors are reduced to a nearly constant 

fraction between successive charge cycles: 

 

 

i

A A

i 1

A A

r
f

r





. (S75) 

Dividing Eq. (S67) by  converged

A Ar  and simplifying in the limit of small  Ar  and small A  

yields: 

                i 1 i i i 1 i 1 converged i 1 i

A A A A A A A A A A A Ar 1 r m 1 r r m                 . (S76)  

 We optimize the convergence parameter m for the case where the val

AN 0  applies but is 

non-binding; that is, for the case where i 1 i converged

A A A 0      . In this case, substituting Eq. (S75) 

into (S76) gives 

            2 i 1 i 1 i 1 i 1

A A A A A A A Af r 1 f r m 1 f r r             (S77) 

which simplifies to the characteristic equation 

    2f 1 m 1 f m 1 0      . (S78) 

Solving Eq. (S78) gives 

        
2 2

1 m 1 1 m 1 4m 1
f

2

      
 .  (S79) 



RSC Advances  S22 

The limiting value of f occurs when the discriminant (i.e., quantity under square root) is zero: 

     
2 2

1 m 1 4m 1 0      (S80) 

which yields 

 
2

1
m

1

 



.  (S81) 

Substituting Eq. (S81) into (S79) yields the limiting value of f: 

f 1   . (S82) 

 We chose the following form for our convergence accelerator: 

 
     

 

       
 

   

  
       

i 1
A

i 1
A

2 2 1 2
2 fixed _ ref avg i

A A A A A Ai 1

A A i i1
fixed _ ref avg i

A A A A
A A A A A A

e r r r
w r

1 a r a w r1 a e r r a w r





 




 


  
 

     
 

 (S83) 

where 0 a 1    is a constant. We chose this form, because it has the key advantage of 

guaranteeing   i 1

A Aw r 0  . Dividing both sides of Eq. (S83) by    converged converged

A A A Aw r r  (Eq. 

(S72)) and taking the logarithm yields 

 

 

 

 

 

       

i 1 i i

A A A A A A

converged converged i i

A A A A A A A A

w r r r
ln ln ln

w r r 1 a r a w r

      
                   

.    (S84) 

Inserting Eqs. (S70) and (S71) into (S84) and simplifying for A 0   yields 

     
 

       

i

A Ai 1 i

A A A A i i

A A A A

r
y2 r 1 y1 r ln

1 a r a w r


 

        
. (S85) 

Inserting Eqs. (S74) and (S75) into (S85) yields 

     
 

       

i

A Ai i

A A A A i i

A A A A

r
f r 1 r ln

1 a r a w r

 
          

.  (S86) 

For small  i

A Ar , expanding Eq. (S71) for A 0   gives 

           i converged i i

A A A A A A A Ar r 1 1 y1 r 1 1 r          (S87) 

where the rightmost side follows from Eq. (S74). For small  i

A Ar , expanding Eq. (S70) gives 

           i converged i converged i i

A A A A A A A A A A A Aw r w r w r r 1 y2 r 1 r       (S88) 

where the rightmost side follows from Eqs. (S72) and (S74). Using Eqs. (S87) and (S88) gives 

 

       

   

           

i i

A A A A

i i i i
A A A A A A A A

r 1 1 r
ln ln

1 a r a w r 1 a 1 1 r a 1 r

     
                 

 (S89) 

which when expanded at first-order for  i

A Ar 1  yields 
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   

           
 

i

A A i

A Ai i

A A A A

1 1 r
ln a r

1 a 1 1 r a 1 r

   
    
       
 

. (S90) 

Substituting Eq. (S90) into (S86) yields 

      i i

A A A Af r r 1 a      . (S91) 

Substituting Eq. (S82) into (S91) and solving gives the optimized convergence accelerator 

parameter 

1
a 1 


 . (S92) 

 Notably, the rate of convergence is practically independent of the material. The largest 

number of charge cycles required to converge the NACs and   avg

A Ar  within 

convergence_threshold e and e/bohr3, respectively, is  

   Aln convergence _ threshold ln q
ch arge _ cycles 4 2

ln(f )

 
     (S93) 

where qA is the maximum NAC magnitude error on the fourth charge cycle. (Recall that the first 

three charge cycles are used to compute the conditioned reference density; therefore, the self-

consistent cycles begin with the fourth charge cycle.) convergence_threshold is the error on the 

(last -2)th charge cycle. Two final charge cycles are required to demonstrate the NAC and 

  avg

A Ar changes between successive charge cycles are below the convergence_threshold two 

times in a row. The first four and last two charge cycles are thus added in Eq. (S93). We used 

convergence_threshold = 10-5 e and e/bohr3 on the NACs and   avg

A Ar , respectively. A 

reasonable approximation is that the NACs on the fourth charge cycle are within ~±0.2 e of the 

final NACs. Substituting into Eq. (S93) with f 1 1/ 2   yields charge_cycles ≤ 14. Indeed, more 

than 99% of the materials studied in this paper converged within 14 charge cycles when using the 

Convex functional with the convergence accelerator. 

 We performed an extensive set of computational tests confirming all aspects of the theory 

described above. These computational tests included both tests on real materials using the 

CHARGEMOL code as well as numerical finite difference models in spreadsheet. All aspects of the 

above theory were doubly confirmed (i.e., both for the real materials and for the finite difference 

models), including:  

1. The errors between successive charge cycles follows a nearly constant ratio f. 

2. We compared f values for m = 0 and the optimal m value (i.e., also a = 0 and the optimal a 

value) for both   = 1/2 and 1/3. All of the computational results were in precise agreement 

with Eq. (S79). In these cases, the number of charge cycles required for convergence 

closely followed Eq. (S93). 

3. As m and a are decreased below their optimal values, the calculation takes more charge 

cycles to converge. As m and a are increased above their optimal values, the calculations 
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do not converge in fewer charge cycles. As m and a are increased to unreasonably large 

values (i.e., many times larger than their optimal values) the calculations begin to oscillate 

notably. 

S3.2.4 Convergence speed of spin partitioning 

 Finally, we note that the DDEC spin partitioning methodS4 follows a similar 

convergence law as that noted above for the Convex functional. Specifically, the spin 

partitioning method uses 
spin 1/ 2   which utilizes a geometric average between  avg

A Am r  and 

 proportional

A Am r .S4 The DDEC spin partitioning method uses an optimized convergence algorithm 

that achieves convergence as rapidly as feasible.S4 For the same reasons as described above, the 

DDEC spin partitioning method converges at the same rate for all materials with a constant error 

fraction between successive spin cycles. Theoretical analysis shows the optimal f value depends 

only on   independent of the particulars of the optimization scheme. Specifically, the analog of 

Eq. (S82) is 

spin spinf 1    . (S94) 

Using 
spin 1/ 2  , this means the ASM errors on spin cycle i+1 are only about 29% as large as the 

errors on spin cycle i. We confirmed this prediction using numerous computational tests on real 

collinear and non-collinear magnetic materials. For both collinear and non-collinear magnetism, 

the required number of spin cycles follows this analog of Eq. (S93): 

   A

spin

ln spin _ threshold ln M
spin _ cycles 1 1

ln(f )

 
     (S95) 

where AM  is the maximum ASM magnitude error on the first spin cycle. In Eq. (S95), the first 

+1 accounts for the first spin cycle. spin_threshold is the error on the (last -1)th spin cycle. A final 

spin cycle is required to demonstrate the ASM changes are below the spin_threshold; this accounts 

for the second +1 appearing in Eq. (S95). For spin partitioning, we used a spin_threshold of 
55 10  electrons with 

spin 1/ 2  . Substituting these values into Eq. (S95) yields 

spin _ cycles 9 .  (S96) 

Indeed, all of the collinear and non-collinear magnetic materials we have examined to date 

followed Eq. (S96). All of the DDEC methods use the same spin partitioning algorithm.S4 Thus, 

the spin partitioning convergence properties are equivalent whether using the DDEC3, DDEC6, or 

Convex functional for charge partitioning. In summary, a key advantage of our methodology is 

that both the charge and spin partitioning converge within a small number of cycles for all 

materials. 

S4. Flow Diagrams for the DDEC6 Method 

S4.1 Algorithm for computing   cond

A Ar  

 As shown in Figure S1, a robust and rapidly converging iterative algorithm was used to 

compute   cond

A Ar . In each iteration, an estimate of 
I

A  is used to compute the estimate 
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     cond avg I avg

A A A A A A Ar Y r Y r   .  (S97) 

Then, constraint  

 
 cond

A AI

A

A

d r
r 0

dr


    (S98) 

 is enforced by recursively setting  

      cond cond cond

A A A A A A Ar min r , r r      (S99) 

beginning with the second radial shell and continuing outward until the last radial shell. To 

complete one iteration, I

A  is computed via  

   
cutoffr

2I cond ref

A A A A A A A

0

r 4 r dr z q 0       . (S100) 

A scheme is required to generate a new I

A  estimate for the next iteration. Since  I

A  is a 

monotonically increasing function of I

A , I

A  should be increased (decreased) when I

A 0   (

I

A 0  ). Convergence is achieved when I

A  is less than some zero tolerance (e.g., 10-10 electrons).  

 The update scheme we used contained the following sequence of steps. In the first iteration, 

we set I (1)

A 0  . Then we set  

   
cutoff

I (i)
I (i 1) I (i) A
A A r

2avg

A A A A

0

2

Y r 4 r dr

 
   



  (S101) 

where 
I (i)

A  is the result of using 
I (i)

A . Because 
I (1)

A 0   if constraint (S98) is binding, 

repetitively applying Eq. (S101) increases 
I (i 1)

A

  until 
I (i)

A 0  . Since 
I (i 1)

A

  more than doubles 

between successive iterations, the number of iterations required to reach this upper bound is small. 

At this point, we stop using Eq. (S101) and set 
I (upper)

A  as the smallest known value yielding 

I (upper)

A 0  . We also set 
I (lower)

A  as the largest known value yielding 
I (lower)

A 0  . The remainder 

of the steps are simply aimed at squeezing the upper and lower bounds as quickly as possible. First, 

we try the midpoint  I (mid) I (upper) I (lower)

A A A 2     to get 
I (mid)

A . Then, we fit the triple of points 

 I (lower) I (lower)

A A,  ,  I (mid) I (mid)

A A,  ,  I (upper) I (upper)

A A,   to a parabola. Then, we set 
I (parabolic)

A  

equal to the root of the parabola where 
I (parabolic)

A  is predicted to be zero. After computing the 

actual value of 
I (parabolic)

A  via Eq. (S100), we identify which points among 
I (lower)

A , 
I (mid)

A , 

I (upper)

A , and 
I (parabolic)

A  are the closest to zero from above (i.e., 
I (above)

A ) and below (i.e., 
I (below)

A

). A linear interpolation between these two closest-to-zero points is performed to identify  
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I (corrector)

A  as the point where I (corrector)

A  is predicted to be: (a) I (above)

A  if I (above) I (below)

A A3    , 

(b) I (below)

A  if I (below) I (above)

A A3    , and (c)  I (above) I (below)

A A 2   otherwise. This procedure 

places I

A 0   approximately half-way between I (corrector)

A  and I (above)

A  or  I (below)

A  (whichever is 

smaller in magnitude), subject to the constraint that the resulting interval size is cut in half or better. 

At the close of this iteration, we identify the new lower (upper) bound as the largest (smallest) I

A  

among I (lower)

A , I (mid)

A , I (upper)

A , I (parabolic)

A , and I (corrector)

A  yielding a corresponding I

A 0   (

I

A 0  ). Having refined the lower and upper bounds, we repeat the bisection, parabolic fitting, 

and linear interpolation steps in the next iteration to reach a tighter yet lower and upper bound. 

This process is repeated until convergence. Because this algorithm cuts the size of the search 

domain by better than half in each reshaping cycle, it is mathematically guaranteed to always 

converge to the correct solution in a few reshaping cycles. In practice, we found this process 

converges magnificently, with one or two cycles of parabolic fitting and linear interpolation 

usually sufficient to achieve a precision of 10-10 electrons.  
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Set  

Parabolic fitting of 

, 

, 

 

Identify new lower and upper bounds as the largest and 

smallest among , , , , 

and yielding   and , respectively. 

End 

Set upper bound as =smallest value yielding  

Set lower bound as =largest value yielding  

Get midpoint  with  

= root of the fitted parabola. Use this value to 

compute  

Identify which , , , 

and are the closest to zero from 

above and below 

Is  or 

 ? 

Yes No 

Find until  

Is 

? 

Choose 

  

Is 

? 
Choose 

 

  

Is 

or 

? 

End 

End 

Is 

? 

NOTE: Every time  is updated, it is used to compute  

 

and we enforce the constraint 

 

by 

 

to finally find 

 

Is 

? 

Yes 

Yes 

Yes 

No 

No 

No 

Yes 

Yes 

No 

No 

Figure S1: Flow diagram 

for computing the 

conditioned reference 

densities subject to the 

applied constraints. 
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S4.2 Summary of the seven charge partitioning steps comprising the DDEC6 method 

  

  
Charge Partitioning Step 1: 

Calculation of reference ion 

charges from neutral atom 

reference densities:

  

Charge Partitioning Step 2: 

Calculation of reference ion 

charges from  

reference ion densities: 

 

Charge Partitioning Step 3: 

Condition the reference ion 

densities to match to the 

specific material of interest. 

These conditioned reference 

densities, , are 

constrained to monotonically 

decrease and integrate to the 

correct number of electrons. 

Initialize the following quantities: , completed_steps = 3, , and charge_cycle = 4. 

Compute and store:  

  

Compute and store for current position only: 

  

Compute and store: 

 

 

 

 

 

Determine the value of update_kappa: 

(A) If charge_cycle = 4, set update_kappa = FALSE 

(B) If charge_cycle > 4: 

(i) set update_kappa = TRUE if  < -10-5 for any atom 

(ii) if update_kappa = TRUE and the  changes between successive charge cycles were 

less than 10-5 electrons for each atom two consecutive times in a row then reset 

update_kappa = FALSE and  = .  

(iii) else the value of update_kappa is left unchanged 

 

completed_steps = 7 ? End 

update_kappa 

completed_steps = completed_steps + 1 

FALSE 

TRUE 

Update the A Lagrange multiplier: 

if  , then   

else  

where  is the value before update 

 

No 

Yes 

Figure S2: Flow diagram summarizing the 

seven charge partitioning steps of the 

DDEC6 method 

Compute and store:  and  

Update the atomic weighting factors: 

  

charge_cycle = charge_cycle + 1 

 

Compute and store: 

 

 

 

  

Apply constraints to ensure 

atom tails not too diffuse: 

Reshape  to get 

 as shown in Figure S3. 

  

Use this sequence to  

apply constraints ensuring atom tails not too contracted: 
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S4.3  Algorithm for computing   A AG r   

 As shown in Figure S3, a robust and rapidly converging iterative algorithm was used to 

compute   A AG r . In each iteration, an estimate of II

A  is used to compute the estimate 

     II

A A A A A A AG r r r    .  (S102) 

Then, the constraint  

 
 

   A AII lower

A A A A A

A

dG r
r r G r 0

dr
       (S103) 

       2lower 1

A A A Ar 1.75 bohr 1 r      (S104) 

 is enforced by recursively setting  

         lower

A A A A A A A A A AG r min G r ,G r r exp r r     (S105) 

beginning with the second radial shell and continuing outward until the last radial shell. To 

complete one iteration, II

A  is computed via  

      
cutoffr

2II

A A A A A A A

0

G r r 4 r dr    . (S106) 

A scheme is required to generate a new II

A  estimate for the next iteration. Since  II

A  is a 

monotonically increasing function of II

A , II

A  should be increased (decreased) when II

A 0   (

II

A 0  ). Convergence is achieved when II

A  is less than some zero tolerance (e.g., 10-10 electrons). 

The update scheme we used contained the sequence of steps shown in Figure S3. These steps are 

analogous to those described in Section S4.1 above, except that 
II

A , 
II

A ,  A AG r , and  A Ar  

replace 
I

A , 
I

A ,  cond

A Ar , and  avg

A AY r . Because our algorithm cuts the size of the search 

domain by better than half in each reshaping cycle, it is mathematically guaranteed to always 

converge to the correct solution in a few reshaping cycles. In practice, we found this process 

converges magnificently, with one to three cycles of parabolic fitting and linear interpolation 

usually sufficient to achieve a precision of 10-10 electrons.
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Set  

Parabolic fitting of 
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Figure S3: Flow diagram 

for computing  
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