
RSC Advances S1

Electronic Supplementary Information for

Introducing DDEC6 Atomic Population Analysis: Part 1. Charge Partitioning

Theory and Methodology

Thomas A. Manz* and Nidia Gabaldon Limas

Department of Chemical & Materials Engineering, New Mexico State University, Las Cruces,

New Mexico, 88003-8001.

*E-mail: tmanz@nmsu.edu

Contents

1. Summary of Charge Partitioning Alternatives Evaluated

2. Integration Routines Employed

3. Computational Algorithm for Convex Functional

4. Flow Diagrams for the DDEC6 Method

Electronic Supplementary Material (ESI) for RSC Advances.
This journal is © The Royal Society of Chemistry 2016

RSC Advances S2

S1. Summary of Charge Partitioning Alternatives Evaluated

 We now briefly summarize some of the alternatives investigated during the course of

developing the DDEC6 method. This section’s purpose is to point out strategies we tried that did

not perform well or that did not result in systematic improvements. This information is important

to avoid duplicative efforts that could result if investigators retried these strategies without

realizing they have already been tried.

 Achieving good general purpose charge assignment is a balancing act of competing

demands: (a) core electrons assigned to the host atom, (b) NACs with good conformational

transferability, (c) chemically meaningful NACs that describe electron transfer trends (and core

electron binding energy shifts in some materials), and (d) an efficiently converging polyatomic

multipole expansion that reproduces the material’s electrostatic potential. To approximately

correlate with spectroscopic core electron binding energy shifts in transition metal compounds, the

assigned atomic charge distributions should not be too delocalized. To give NACs that

approximately reproduce molecular dipole moments and the electrostatic potential surrounding a

material, the assigned   A Ar should resemble their spherical averages,   avg

A Ar . To achieve

good conformational and chemical transferability among similar materials, it is preferable for the

assigned   A Ar to resemble real atoms. This can be achieved by optimizing   A Ar to

resemble reference ion densities. Therefore, we believe the most straightforward approach to

achieving an even-tempered charge assignment method involves three components: (a) integrating

the electron density in the local vicinity of each atomic nucleus (where ‘vicinity’ refers to positions

close to the volume of space dominated by that atom), (b) optimizing   A Ar to resemble their

spherical averages, and (c) optimizing   A Ar to resemble a set of reference ions.

 Following these general principles, we tested a large number of new charge assignment

algorithms. For various reasons, some of these charge assignment algorithms worked much better

than others. Of all the algorithms we tested, the algorithm with the best overall performance was

selected to be the DDEC6 method. We now briefly describe the other algorithms we tested.

 In some schemes, we defined a localized net atomic charge as

  

  
 

m

A Aloc 3

A A Am

B B

B,L

w r
q z r d r

w r
  


 (S1)

where  A Aw r is a DDEC-style atomic weighting factor combining a reference density and

(optionally) spherical averaging with (optionally) exponential tail constraints. Different values of

m > 1 were investigated. In each charge partitioning iteration,
ref

Aq was set equal to some linear

combination of
loc

Aq , Aq ,
HD

Aq , and (optionally) other factors. The
loc

Aq and Aq were then updated

in each iteration and iterated to convergence. This type of scheme does not work well, because in

materials like boron nitride the cation is more diffuse than the anion leading to loc

A Aq q resulting

RSC Advances S3

in increased NAC magnitude when any loc

Aq is included in ref

Aq . (These larger NAC magnitudes

degraded the quality of fitting the electrostatic potential in materials like the BN sheet and

nanotube.) We tried to counterbalance this by mixing in a fraction of HD

Aq (which usually has

HD

A Aq q), but this did not produce consistently good results across a wide range of materials.

We also tried variations where ref

Aq was set to whichever was smaller in magnitude, loc

Aq or Aq .

We also tried variations in which ref

Aq was adjusted for each atom until loc

A Aq q . We also tried

various schemes in which ref

Aq was adjusted for each atom until loc

Aq preferably lay between HD

Aq

and Aq (or between 0 and Aq), subject to the condition that ref

Aq should differ from Aq by no more

than a preset allowance (‘trust radius’). In fact, we publically released one such scheme called

DDEC4 in the CHARGEMOL 3.1 version released on ddec.sourceforge.net September 29, 2014.

(This version computed the DDEC3 NACs by default, but contained the option to compute DDEC4

NACs instead.) Nevertheless, our further testing revealed more advantageous approaches, which

resulted in the DDEC4 algorithm being abandoned.

 After extensive trials, we finally realized that continuously updating loc

Aq and ref

Aq is

inherently problematic. Specifically, some of the atoms get greedy and continuously take electrons

from the other atoms. To our surprise, we found the difference loc

A Aq q can remain nearly constant

in some materials (e.g., TiO solid) over a large number of iterations in which Aq changes by a

total of >0.5 electrons. This means that a continuously updated
loc

Aq does not provide a reliable

reference value to prevent atoms from becoming greedy. We briefly tried setting
loc

Aq equal to the

Bader charge, but abandoned this strategy due to the presence of non-nuclear attractors in some

materials.

 We also tested more aggressive buried tail constraints in which    A A AP r w r was

constrained to decay exponentially with increasing Ar in the atom’s buried tail, where  AP r was

a polynomial of Ar . We tested a few different polynomials  AP r chosen to reproduce the limits

 AP r 0 1  and    
p

A AP r r  with p > 1. (The DDEC4 method briefly mentioned above

contained this type of tail constraint.) After extensive testing, we concluded the extra complexity

of  AP r did not appreciably improve results across a wide range of materials, so we reverted to

the simpler strategy of constraining just  A Aw r to decay exponentially in the atom’s buried tail.

We also tried various schemes for computing the decay exponents applied to  A Aw r . Ultimately,

we decided to use a strategy similar to that used in the DDEC3 method plus the addition of a

constraint to prevent  A Aw r from becoming too contracted.

RSC Advances S4

 We also tested strategies in which ref

Aq was set equal to a linear combination of Aq , first _ loc

Aq

(i.e., loc

Aq computed in the first charge partitioning iteration) , second_loc

Aq (i.e., loc

Aq computed in the

second charge partitioning iteration), loc

Aq (computed in the current charge cycle), HD

Aq , and the

net atomic charge computed from the iterative-Hirshfeld like partitioning using the conditioned or

unconditioned charged reference ion. After extensive testing, we could not attribute any tangible

benefit to the continuous updating of ref

Aq in each charge cycle, so we finally replaced this kind of

strategy with a fixed ref

Aq value.

 Finally, after deciding to use a fixed ref

Aq value for all latter charge cycles, we tested various

schemes for computing the target ref

Aq value. We tested a scheme similar to the DDEC5 method

(see description next paragraph), except 1,Stock 1,Loc 1,ref 2,Stock 2,Loc 2,ref

A A A A A Aq ,q ,q ,q ,q ,q were computed

based on the conditioned reference densities instead of the unconditioned reference densities. We

also tried schemes that employed various combinations based on both the conditioned and

unconditioned reference densities. Using conditioned reference densities to compute
1,Stock 1,Loc 1,ref 2,Stock 2,Loc 2,ref

A A A A A Aq ,q ,q ,q ,q ,q worsened the performance. We also tested schemes in which

the ratio of 1,Stock

Aq to 1,Loc

Aq to form 1,ref

Aq was set different than the ratio of 2,Stock

Aq to 2,Loc

Aq to form

2,ref

Aq . However, we did not notice any appreciable improvements and so decided on the simpler

scheme of keeping these two ratios the same. We also investigated variations of this ratio before

settling on the value used in the DDEC5 and DDEC6 methods.

 One of the schemes we developed with fixed ref

Aq was called the DDEC5 method. This

method used        
1

cond wavg

A A A A A Ar r r
 

    with one conditioning step (i.e., c = 1) and

1/ 3  to yield DDEC5

equiv 1/ 4  . This method used the same formula for  wavg

A Ar and the same

reference ion charges (and  cond

A Ar) as the DDEC6 method. DDEC5 also applied the same

exponential decay constraints on  A Aw r in the fourth and later charge cycles as the DDEC6

method. DDEC5 also applied the constraint
val

AN 0 . We publically released DDEC5 in the

CHARGEMOL 3.2.1 version released on ddec.sourceforge.net August 12, 2015. (This version

computed the DDEC3 NACs by default, but contained the option to compute DDEC5 NACs

instead.) While the DDEC5 method performed well, it did not have a provably convex

optimization functional or provably unique solution. We also extensively tested one algorithm with

the same form as DDEC5, except using two conditioning steps (i.e., c = 2) and 1/ 2  to yield

equiv 1/ 4  . This algorithm did not converge for the ozone+1 B3LYP system. This led us to

believe the DDEC5 method might not converge for some materials, due to its optimization

functional not being provably convex. Desiring a proof of unique convergence, we then developed

the Convex functional and later the DDEC6 method that have proven unique solutions.

RSC Advances S5

 We also tested schemes similar to those described above, but differing in parameter values

such as the localization exponent m, the precise formulation of the  A Aw r tail constraints, etc.

We also tested a few schemes that are quite different from those described above. A few additional

schemes computed loc

Aq based on atom-atom overlap populations (computed via various schemes)

instead of based on Eq. (S1) above. However, these were more computationally expensive than

Eq. (S1), and we did not discern any performance improvements compared to Eq. (S1). We also

tried schemes in which the AIM charge distribution  A Ar was computed by using linear

combinations of      A Ar w r / W r and        
m m

A A B B

B,L

r w r / w r  with m > 1 or other

localization schemes instead of   
m

A Aw r .

 While this list is not comprehensive of all of the charge partitioning algorithms we tested,

it provides a general idea of the types of charge partitioning schemes we tested. In the end, we

settled on the DDEC6 charge partitioning method, because it provided consistently good results

across a wide range of material types.

 In addition, we performed a large number of tests regarding optimization of the

computational cost. In addition to computational tests on various materials, we developed iteration

calculus with associated algebraic models (solved analytically) and finite difference numerical

models (solved in spreadsheets) that accurately predicted and described the convergence

performance of various computational algorithms. We used these mathematical models to derive

the optimal parameters leading to fast and robust convergence. Using this iteration calculus, we

designed efficient convergence accelerators (see Section S3.2.3 below) that optimize the

convergence speed for self-consistent schemes. Our computational tests confirmed the

theoretically derived optimal parameters and performance improvements associated with these

convergence accelerators. These improvements ultimately led to the number of required charge

cycles being reduced from <200 for the DDEC3 method to ~7 for the DDEC6 method. We believe

that ~7 charge cycles is close to the minimum of what can be used to consistently obtain accurate

results.

S2. Integration Routines Employed

S2.1 General Overview

 In the limit of an arbitrarily fine grid spacing and sufficiently large cutoff radii, the

converged DDEC6 properties should be independent of the specific choice of integration routine.

The choice of integration routine primarily effects the computational efficiency and precision. The

optimal integration routine depends on the type of input information available. A uniformly spaced

grid is a convenient choice for quantum chemistry calculations using planewave basis sets, because

this type of grid naturally lends itself to computing the electron and spin density grids via Fourier

transform from the planewave coefficients. In general, using a uniformly spaced grid for charge

partitioning is convenient when the quantum chemistry program (VASP, ONETEP, GPAW, etc.) used

to generate the electron and spin distributions also uses this same grid type. A uniformly spaced

grid is not the most computationally efficient choice for quantum chemistry calculations using

RSC Advances S6

Gaussian basis sets. For quantum chemistry calculations using Gaussian basis sets,

computationally efficient atom-centered overlappingS1 and non-overlappingS2 grid types have been

extensively described in the literature. Nevertheless, we used a uniformly spaced grid for all

DDEC6 calculations described in this work. This was motivated by the fact that atom-centered

overlapping and non-overlapping grids have not yet been programmed into the CHARGEMOL

program used to compute the DDEC6 properties.

 When using uniformly spaced grids, it is sometimes best to integrate core-like and valence-

like electron distributions separately. Here, the term core-like electron distribution refers to an

electron distribution concentrated near atomic nuclei. Core-like electron distributions can have

extremely high density values near atomic nuclei. The term valence-like electron distribution refers

to an electron distribution that has a significant fraction of its electrons in the atomic valence

regions without extreme density spikes near the atomic nuclei. Unless special precautions are

taken, the extreme density spikes near atomic nuclei in core-like electron distributions can lead to

inaccurate integration of the number of core-like electrons. Using an extremely fine uniform grid

to integrate the core-like electron distribution is one possible strategy, but this strategy would be

too computationally expensive and impractical. Instead, we integrate the core-like and valence-

like electron distributions separately. Then we correct the core-like density grid to force it to

integrate to the correct number of core-like electrons. With this correction in place, accurate

integrations over the core-like density grid can be performed. The following Section S2.2 describes

details of this core grid correction.

 During DDEC analysis of VASP PAW quantum chemistry calculations, the precision of

integrating valence-like electron distributions was improved using the valence occupancy

correction and all-electron spin density approximation described in the Supporting Information

Section E (pages S9–S10) of Manz and Sholl.S3

 During DDEC analysis of GAUSSIAN 09 generated wfx files, the precision of integrating

electron and spin distributions and multipole moments was improved using the valence occupancy

corrections described in the Supporting Information Section F (pages S10–S11) of Manz and

Sholl.S3 In the present work, we made two additional improvements in computational efficiency.

First additional improvement in computational efficiency: Each Gaussian basis set product has the

general form        1 2 3 2

0 0 0 0X X Y Y Z Z exp r r     . Here,  0 0 0 0r X ,Y ,Z represents

the center of the Gaussian basis set product. The powers  1 2 3, , are non-negative integers. To

improve computational efficiency, we sorted all Gaussian basis set products into blocks where

Gaussian basis set products in each block shared the same  and 0r . The  2

0exp r r  ,

 0X X ,  0Y Y , and  0Z Z terms were computed only once for each block at each grid

point. This produced computational savings by avoiding recomputing these terms for every

Gaussian basis set product within each block. Second additional improvement in computational

efficiency: We added a grid interpolation scheme to increase the computational efficiency of

generating valence, core, and spin density grids from Gaussian basis set coefficients. This grid

RSC Advances S7

interpolation decreases the computational cost by a factor of approximately five or more with

negligible impact on the computational precision. Specifically, we used a set of grids explicitly

including every nth grid point along each lattice direction, with n = 1 (finest), 2, 3, 4, 6, 8, or 12

(coarsest). The finest grid (i.e., n = 1) had a uniform spacing of ~0.14 bohr. Each Gaussian basis

set product was assigned to one of these grids according to how diffuse it was. Specifically, a

Gaussian basis set product proportional to  2

0exp r r  was assigned to grids according to the

following scheme:

(1) If  > 5 (atomic units), the Gaussian basis set product was assigned to the core-like density

grid with analytic integration to compute the occupancy corrections. This grid had a

uniform spacing of ~0.14 bohr.

(2) If 5 0.4  (atomic units), the Gaussian basis set product was assigned to the n=1

valence density grid. This grid had a uniform spacing of ~0.14 bohr.

(3) If
 

22

i i 1

0.16 0.16

n n 

   (atomic units), the Gaussian basis set product was assigned to the

in valence density grid, where in 2,3,4,6,8 . The Gaussian basis set product was

assigned to the n=12 (coarsest) valence density grid if  0.16 /144  (atomic units). This

scheme scales the coarseness of the grid in the exact same manner that  scales. This

means the ‘relative coarseness’ of the grid remains approximately constant independent of

the  value.

The valence and spin density contributions for each Gaussian basis set product were computed on

the corresponding assigned nth grid. For each Gaussian basis set product, a renormalization factor

of up to ±5% was applied to ensure it integrated to the proper value over the grid.S3 After all

Gaussian basis set products were computed over the corresponding grids, the coarser grids were

interpolated back onto the finer grids in the following order: (a) the n = 12 grid was interpolated

back onto the n = 6 grid, (b) the n = 8 grid was interpolated back onto the n = 4 grid, (c) the n = 6

grid was interpolated back onto the n = 3 grid, (d) the n = 4 grid was interpolated back onto the n

= 2 grid, (e) the n = 3 grid was interpolated back onto the n = 1 grid, and (f) the n = 2 grid was

interpolated back onto the n = 1 grid. This has the effect of interpolating the n = 12 grid onto the

n = 1 grid by first interpolating the n = 12 grid onto the n = 6 grid, then interpolating the n = 6 grid

onto the n = 3 grid, and finally interpolating the n = 3 grid onto the n = 1 grid. By the sequence of

steps (a) to (f), all of the coarser grids were finally interpolated onto the n = 1 grid. A linear

interpolation was used in each of steps (a) to (f). Such a linear interpolation yields the same integral

of each Gaussian basis product over the coarser and finer grids.

 In this work, we used a 5 Å cutoff radius for  A Aw r , which means  A Ar 0  for Ar > 5

Å. For all charge distributions depending only on Ar (i.e., spherically symmetric distributions), we

used 100 radial shells evenly spaced between 0 and 5 Å.

RSC Advances S8

S2.2 Core Electron Partitioning with Core Grid Correction

S2.2.1 Overview

 Core electron partitioning with core grid correction assigns core-like electron distributions,

  core

A Ar , that integrate to yield the exact analytic number of core-like electrons for each atom

 core 3 core

A A A Ar d r N  . (S2)

Here, core

AN refers to the exact analytic number of core-like electrons that have been included in

the core-like electron distribution,  core r . In general, this depends upon the specific density grid

setups not the chemical states of atoms. For example, a Mg atom could have core

AN set to 0, 2, 10,

or other values, depending on how many core-like electrons were written to the core density grid.

 Core grid correction is not necessary to compute accurate NACs. (When comparing NACs

computed with to without this core grid correction, the NACs typically change by up to ~0.002 e

due to integration artifacts arising from the finite grid spacing.) For example, the paper introducing

the DDEC3 method did not use core grid correction.S3 The primary reason for including core grid

correction is that it allows   A Ar to be integrated to yield NA without worrying about errors in

the integrated number of core-like electrons. This is critical for evaluating quantities that are

nonlinear functionals of   A Ar . Bond orders quantify the number of electrons exchanged

between two atoms. Because the exchange interaction is a nonlinear functional of the electron

density, integrals for computing bond orders must be based on  A Ar not just the atomic valence

density  val

A Ar . This requires that  A Ar integrate to the correct number of electrons—hence

the need for a core grid correction.

 If an atomic nucleus falls directly on a grid point, the density at that grid point may be very

high. During integration, the number of electrons contributed by a pixel is calculated as the electron

density at that pixel times the pixel volume. For a pixel centered on an atomic nucleus, the average

electron density in the volume occupied by the pixel is less than the electron density exactly at the

nuclear position. Therefore, grid points centered directly at atomic nuclei will produce integration

errors if the density is taken to be that at the nuclear position. This error can be removed by

estimating and using the average density for each pixel volume in place of the point density at the

nuclear position.

S2.2.2 Design Criteria

a) The core-like density assigned to each atom should integrate to the correct number of core-like

electrons within a specified convergence tolerance (e.g., 10-5 e). For example, if a calculation

is performed with 2 core electrons in Mg, the assigned core density for this atom should

integrate to between 1.99999 and 2.00001 e. This is done by correcting the core density for

pixels with the highest core density (i.e., the nuclear cusps).

b) The core grid correction should never produce a negative core-like electron density for any

grid point.

RSC Advances S9

c) For a particular atom, the core grid correction should not change the relative ordering of grid

point core-like densities. Specifically, if grid point 1 contains a higher core-like density

assigned to atom A than grid point 2, then after the correction is applied this should still be the

case.

d) Because nuclear cusps contribute most of the integration error, the core grid correction should

be localized to those grid points with the highest core-like densities (i.e., those closest to atomic

nuclei).

e) The core grid correction should not interfere with the exponential decay constraint applied to

the   core

A Aw r . Recall that atomic core densities decay at least as fast as exp(-2rA) where rA

is in bohr. This constraint is applied during the core partitioning. Consider two grid points near

nucleus A such that grid point 1 is closer to nucleus A than grid point 2. Then,

      core core

A 2 A 1 2 1w r w r exp 2 r r   (S3)

where 1r and 2r are the distances from grid points 1 and 2, respectively, to nucleus A.

S2.2.3 Iterative Algorithm

 Two separate sets of iterations are performed: (i) a first set of iterations to determine a pre-

corrected  core

A Aw r and (ii) a second set of iterations to correct the core-like electron density grid

to yield the correct number of core-like electrons for each atom.

S2.2.3.1 Iterations to determine a pre-corrected  core

A Aw r

 For atoms having no core-like electrons assigned to the core grid (e.g., if core

AN < 10-10), the

assigned  core

A Aw r and  core,avg

A Ar are set to zero. For all remaining atoms, the following

sequence of steps is performed starting with the initial estimate    core ref ref

A A A A Aw r r ,q 0   .

a) For each grid point:

   core core

A A

A,L

W r w r (S4)

b) The spherical average core density is computed for each atom,

 
 

 
 

A

core

A Acore,avg core

A A core

r

w r
r r

W r
   (S5)

c) If  core,avg 3

A A Ar d r changes between successive core iterations are 510 e for every atom and

at least five prior core iterations have been performed, the calculation is considered converged

and exits. Otherwise, the calculation continues.

d) Starting with    core core,avg

A A A Aw r r as the initial guess,  core

A Aw r is updated to satisfy

constraint (S3) by recursively setting

        core core core

A A A A A A A Aw r min w r ,w r r exp 2 r    (S6)

beginning with the second radial shell and continuing outward to the last radial shell. The

calculation then repeats the sequence of steps b) to d) until it converges and exits in step c).

RSC Advances S10

S2.2.3.2 Iterations to correct the core density grid

 For atoms having no core-like electrons assigned to the core grid (e.g., if core

AN < 10-10), the

assigned  core

A Aw r and  core,avg

A Ar are set to zero. For all remaining atoms, the following

sequence of steps is performed to correct the core grid.

a) In each correction iteration i, a real variable AK is computed for each atom using the following

equations

 
 

 
 

core

A Acore corei
A A corei i

i

w r
r r

W r
   (S7)

 

     

core core 3

A A A Ai
A 3 2i

core 3 core

A A A Ai i

N r d r 0.25
K min ,

r d r max

  
   

   
   
  




 (S8)

where  core

A i
max is the largest value of  core

A A i
r over the set of all grid points.

b)  core r is updated by

 
 

  

core

A Acore i
A A i 1 2

core

A A Ai i

r
r

1 2K r



 

 

 (S9)

   core core

A Ai 1 i 1
A,L

r r
 

   . (S10)

c)  core,avg

A Ar is updated by

 
 

 
 

A

core

A Acore,avg corei
A A corei 1 i 1

i r

w r
r r

W r 
   (S11)

d) If  core core,avg 3 5

A A A Ai 1
N r d r 10


   for every atom, the calculation is considered converged

and exits. Otherwise, the calculation continues.

e) Starting with    core core,avg

A A A Ai 1 i 1
w r r

 
  as the initial guess,  core

A A i 1
w r


 is updated to satisfy

constraint (S3) by recursively setting

        core core core

A A A A A A Ai 1 i 1 i 1
w r min w r , w r exp 2 r

  
   (S12)

beginning with the second radial shell and continuing outward to the last radial shell.

f)  coreW r is updated:

   core core

A Ai 1 i 1
A,L

W r w r
 
 (S13)

RSC Advances S11

The calculation then repeats the sequence of steps a) to f) until it converges and exits in step

d).

S2.2.4 Proof this Iterative Algorithm Satisfies the Design Criteria

a) The iterative scheme converges to the desired solution. Proof: Near the solution, we have

 

  

core core 3

A A A Ai
A 3i

core 3

A A Ai

N r d r
K

r d r

 







 and   

2
core

A A Ai i
K r 1 (S14)

Therefore, we can expand Eq. (S9) as a Taylor series to give

   
 

  
  

core core 3
3A A A Acore core corei

A A A A A A3i 1 i icore 3

A A Ai

N r d r
r r r residual

r d r


  
   

       
  
  




 (S15)

Integrating Eq. (S15) yields

 core 3 core

A A A Ai 1
r d r N residual


   (S16)

which shows  core 3

A A Ai 1
r d r


 converges to core

AN . Combining Eqs. (S9) and (S16) gives

 

  

core

A A 3 corei
A A

2
core

A A Ai i

r
d r N residual

1 2K r

 
 

  
  
 

 (S17)

which shows the left side of Eq. (S17) converges to
core

AN . This can only be true if
A

i
limK 0




, because otherwise  core

A A i
r would increase (

A
i
limK 0


) or decrease (
A

i
limK 0


) without

bound. With Eq. (S8) this means

 core 3 core

A A A Aii
lim r d r N


  (S18)

   
A

core core

A A A A iK 0
i

lim r r

   (S19)

so the iterative process converges to the desired solution.

b) The corrected core density is nonnegative at every grid point. Proof: The minimum of the

factor   
2

core

A A Ai i
1 2K r  occurs when A i

K 0 and for the grid point    core

A A i
r max .

From Eq. (S8), it follows   
2

core

A A Ai i
K r 0.25  . Therefore,

  
2

core

A A Ai i
1 2K r 1/ 2   . Examining Eq. (S9), this means  core

A A i 1
r 0


  .

c) For a particular atom, the correction does not change the relative ordering of grid point core

densities. Proof: Consider the function

RSC Advances S12

 
2

s
s

1 2Ks
 


 (S20)

which has the derivative

 
3/2

2

d 1

ds 1 2Ks





 (S21)

 s is a monotonically increasing function of s over the range 2Ks 0.5 . Because Eq. (S9)

has the functional form  s , the relative ordering of grid point core densities is preserved for

each atom.

d) The correction is localized to those grid points with the highest core densities (i.e., those closest

to atomic nuclei). Proof: Combining

   core core

A Ai i
A,L

r r   (S22)

with Eq. (S10) gives

     
  

core core core

A Ai 1 i i 2
coreA,L

A A Ai i

1
r r r 1

1 2K r


 
 

     
  
 

 (S23)

Consider the function

   
2

1
g s s 1 s s

1 2Ks

 
     

 
 (S24)

which has the derivative

 
3/2

2

dg 1
1

ds 1 2Ks
 


. (S25)

dg
0

ds
 if and only if K = 0 or s=0. Moreover,  g s is a monotonically increasing (when K >

0) or decreasing (when K < 0) function of s over the range 2Ks 0.5 . For small s,  g s

expands a Taylor series to

 
 

3 3

2

max

0.25
g s Ks residual s residual

s
    (S26)

The inequality on the right-most side of Eq. (S26) arises from Eq. (S8). Due to the cubic

dependence of  g s on s for small s, the points with largest  core

A A i
r dominate the core

correction for atom A. These points are typically located close to nucleus A.

e) The correction does not interfere with the exponential decay constraint applied to   core

A Aw r

. Consider two grid points near nucleus A such that grid point 1 is closer to nucleus A than grid

point 2. From Eq. (S9),

RSC Advances S13

 

 

 

 

  
  

2
corecore core

A A 2A 1 A 1 i ii 1 i

2core core
core

A 2 A 2i 1 i A A 1i i

1 2K rr r 1
ln ln ln

2r r 1 2K r





             
             

 (S27)

case 1: AK 0 . In this case, the last term in Eq. (S27) increases
 

 

core

A 1 i 1

core

A 2 i 1

r
ln

r





 
 
 
 

 so the core

density increase performed during the core grid correction does not cause
 

 

core

A 1 i 1

core

A 2 i 1

r
ln

r





 
 
 
 

 to

be   2 1exp 2 r r  .

case 2: AK 0 . This occurs when the core density grid assigns too much core density to atom

A. This can be due to a nucleus falling directly on a grid point, in which case the core density

near this nucleus is too high and Eq. (S27) appropriately decreases it. Alternatively, this case

can arise if the assigned core density is too diffuse for any reason. The lowering of core density

near this nucleus together with constraint (S3) corrects the problem of too much core density

being assigned to this atom.

S2.2.5 What features cause this scheme to converge rapidly and robustly?

a) The correction is localized to regions with highest  core

A Ar where typically

   A Aw r W r 1 . This makes corrections for different atoms almost independent of each

other.

b) The relative ordering of core density values for an atom is preserved. This ensures a smooth

behavior.

c) Convergence is rapid near the solution, as evidenced by the Taylor series expansion in Eqs.

(S15) and (S16).

d) Examining Eqs. (S8) and (S9), the density changes are bounded by

 

 

core

A A i 1

core

A A i

r1
2

r3




 


 (S28)

The extreme values occur for the grid point corresponding to  core

A i
max when

  
3

core 3

A A Ai
r d r is dominated by  core

A i
max such that

     
3 3

core 3 core

A A A A pixeli i
r d r max V    (where pixelV is the pixel volume) and under the

condition that  core core 3

A A A Ai
N r d r  is large. Under these conditions, AK 0 gives the

limiting behavior

RSC Advances S14

   
   

    
    

   

core

A Acore i
A A i 1 2

core

A A2 icore

A A i

core

A A i

r max
r max

0.25
1 2 r max

r max

2 r max




 

 



 

. (S29)

Under these conditions,
AK 0 gives the limiting behavior

   
   

     
    

    

   

core

A Acore i
A A i 1

core core
2A A A pixeli core

A A3 icore

A A pixeli

core

A A i

r max
r max

N r max V
1 2 r max

r max V

r max

3




 

 
 






(S30)

when     core core

A A pixel Ai
r max V N .

e) Noting that  
20

2 1024 , this means about 20 iterations are required to increase a grid point

density by a factor of 103. Noting that  
13

3 1262.665 , this means about 13 iterations are

required to decrease a grid point density by a factor of 103. Because the approach to

convergence is smooth and the core density assigned to each grid point is never off by more

than a factor of 106, this means convergence is always achieved in fewer than 40 iterations. In

practice, convergence is nearly always achieved in fewer than 20 iterations.

S3. Computational Algorithm for Convex Functional

S3.1 Iterative Algorithm

 The complex functional was optimized using the following procedure. First,
ref

Aq was

computed in the first two charge cycles as described in Section 3.2 of the main text. Second, the

conditioned reference ion density,  cond

A Ar , was computed in the third charge cycle as described

in Section 3.3 of the main text.

 The fourth charge cycle used the following procedure to compute the fixed reference

density

   fixed_ ref

A A A Ar H r  (S31)

in the Convex functional. First, we computed

       
A

cond cond

A A A A r
r r r / r     . (S32)

Then,  A Ar is reshaped to form  A AG r exactly as described in item i) in Section 3.4 of the

main text. Then,  A AG r is reshaped to form  A AH r exactly as described in item ii) of Section

3.4 of the main text.

RSC Advances S15

 The fifth (i.e., i 5) and latter charge cycles form an iterative process to achieve a self-

consistent solution. The fifth charge cycle starts with the following initial estimates:

   5 fixed_ ref

A A A Aw r r , 5

A 0  , and 5

AC 1 . These are refined to self-consistency using the

following sequence of steps in the fifth and latter charge cycles:

1. In the first loop over grid points and atoms, the following sum is computed at each grid

point:

   B B

B,L

W r w r (S33)

2. In the second loop over grid points and atoms, the following quantities are computed:

       A A A Ar w r r W r   (S34)

   
A

avg

A A A A r
r r   (S35)

  3

A A A AN r d r  (S36)

 

 

 

 
 A A A A 3

A A A A

w r w r
u 2 1 1 r d r

W r W r

   
         

   
 (S37)

All of these quantities except   A Ar are stored.

3. If the AN and   avg

A Ar changes between successive charge cycles were less than 10-5e

and 10-5e/bohr3, respectively, for each atom two consecutive times in a row then the

calculation is considered converged. Starting with the 10th charge cycle, the calculation

breaks at this point if it is considered converged. If it is not converged or the charge cycle

is less than 10, the calculation proceeds to # 4 below.

4. At the end of the ith charge cycle  i 5 , the updated atomic weighting factors are given

by

     
i 1
Ai 1 i fixed _ ref avg

A A A A A A Aw r C e r r
    (S38)

 where

   i 1 i val

A A A Acons tmax 0, N / u     (S39)

if
7

Au 10 , and
i 1

A 0  if
7

Au 10 . The constant appearing in Eq. (S39) affects only

the convergence speed and robustness without affecting the converged solution. The

approximately optimal value of 32 4 is derived in Section S3.2.2 below. The

RSC Advances S16

convergence accelerator, i

AC , minimizes the number of required charge cycles without

changing the converged solution. For i 6 ,

   

         

i 1
A

i 1
A

fixed _ ref avg

A A A Ai

fixed _ ref avg i

A A A A A A

e r r
C

2 2 e r r 2 1 w r









 


    
. (S40)

As explained in Section S3.2 below, this form of the convergence accelerator maximizes

the convergence speed. The convergence accelerator equals one when the calculation

converges.

 After generating  i 1

A Aw r for each atom, the calculation returns to step #1 above and starts

the next (i.e.,  i 1) charge cycle using  i 1

A Aw r as the new estimate for  A Aw r in Eq. (S33).

This iterative process is continued until the calculation satisfies the convergence criteria and breaks

in step #3 above.

 We now show that convergence of  AN and   avg

A Ar can occur only if  A are also

converged. Following Manz and Sholl,S3 we define

 

 

   

  
 A A A A B B 3A

AB AB 2
LB

w r w r w rN
J r d r

W r W r

 
     
 
 

 . (S41)

The
L

 in Eq. (S41) accounts for periodic images (if any) of atom B. For a process in which

  avg

A Ar are converged, changes in   A Aw r can arise only from changes in  A . For such a

process,

A A A AB B

A A B

d dN d J d     (S42)

Inserting Eq. (S41) into (S42) and rearranging gives

 
   

  
 

2 A A B B 3

A A A B 2
A A B,L

w r w r1
d dN d d r d r 0

2 W r

  
        
  

  

   . (S43)

If  AN are converged, then both sides of Eq. (S43) are identically zero. For every pair of atoms

A and B, this requires either  
2

A Bd d 0    or else the AB overlap integral in Eq. (S43) is zero.

Thus, for any sets of atoms with non-zero overlaps,  Ad 0  when  AdN 0 . For an atom

without any overlaps (i.e., isolated atomic ion limit), Au 0 and the converged  A Ar is

independent of A . Therefore, when uA is negligible (e.g.,
7

Au 10) we set A 0  . For all other

atoms,  
2

A Bd d 0    when  AdN 0 . Therefore,  AN cannot be converged between

RSC Advances S17

successive charge cycles unless  A are converged between successive charge cycles. Therefore,

  A Aw r are converged in the Convex functional method if and only if  AN and   avg

A Ar

are converged.

S3.2 Derivation of Optimal Convergence Parameters

S3.2.1 Derivation of the form of uA in Eq. (S37)

 The careful reader will observe the quantity uA appearing in Eq. (S37) for the Convex

functional has a different form than the quantity uA appearing in Eq. (77) of the main text for the

DDEC6 method. During each DDEC6 charge partitioning step,  A AH r is computed first and then

A is adjusted if necessary; that is, A is optimized while keeping  A AH r constant. In contrast,

when optimizing the Convex functional, A affects  avg

A Ar which in turn affects  A Aw r ; that

is, A is updated while varying  avg

A Ar . For generality, we consider an atomic weighting factor

of the form

       A
1

convex fixed _ ref avg

A A A A A Aw r e r r
 


   (S44)

where 0 1   . Note that 1/ 2  for the Convex functional described in Section S3.1 above.

Inserting Eq. (S44) into Eq. (46) of the main text and rearranging yields

        A

A

1/
avg fixed _ ref

A A A A r
r e r r / W r


 

    . (S45)

Case 1: When    W r r , changes in  convex

A Aw r tend to be absorbed by the other atoms. In

this case, taking the partial derivative of Eq. (S45) yields

   

B A

avg avg

A A A A

A

r r



  
 

  
 (S46)

which combined with Eq. (S44) yields

   

B A

convex convex

A A A A

A

w r w r



 
 

  
. (S47)

Case 2: At the other extreme, where changes in  convex

A Aw r are not absorbed by the other atoms,

then

     

   

 

 

 

B A

3A
A A A

A A

A A A A 3

A

A

N
w r r W r d r

w r r w r
1 d r

W r W r



  
  

  

  
     





. (S48)

Taking the partial derivative of Eq. (S44) with the help of Eq. (S45) yields

 

B A

convexconvex
A AA

A

w rw



 
 

  
. (S49)

RSC Advances S18

Substituting Eq. (S49) into (S48) gives

 
 

 

 

 
B A

convex

A Aconvex 3A
A A A

A

r w rN 1
w r 1 d r

W r W r


  
        

 . (S50)

Cases 1 and 2 can be combined by noting that case 1 dominates when    convex

A Aw r W r , and

case 2 dominates when    convex

A Aw r W r . Assuming a linear interpolation where

 

 

convex

A Aw r
1

W r

 
  

 
 is the fraction assigned to case 1 and

 

 

convex

A Aw r

W r
 is the fraction assigned to

case 2 yields:

 
 

 

 

 

 

 
B A

convex convex

A A A Aconvex 3A
A A A A

A

r w r w rN 1
u w r 1 1 d r

W r W r W r


   
             

 . (S51)

The safest approach corresponds to setting uA to its approximate upper bound. (This corresponds

to estimating A changes conservatively to minimize overshoot.) This explains the basis for the

form of uA appearing in Eq. (S37).

S3.2.2 Derivation of the constant value in Eq. (S39)

 To derive this constant, we construct a convergence model in which the error at charge

cycle i is characterized by

 val

i A i
min N ,0   (S52)

where i is some positive number. (Note that i has a different value for each atom.)

Substituting Eq. (S52) into (S39) yields
i 1 i

A A i Acons t / u    . (S53)

During charge cycle i+1, this change in A impacts  A Aw r only through the Ae


 prefactor and

not through the  avg

A Ar term, because the  avg

A Ar term will be impacted only during the i+2

and subsequent charge cycles. From Eq. (S44), the change in  convex

A Aw r at constant  avg

A Ar is

 

 

 
avg

A B AA

convex

A A convex

A A

A r ,

w r
w r

 

 
 

 
. (S54)

Comparing Eqs. (S54) and (S47) gives

 

 

 

avg
A B A B AA

convex convex

A A A A

A Ar ,

w r w r

   

    
    

    
. (S55)

 Eq. (S55) therefore implies that within overlapping atomic regions

 avg
A B A B AA

val val

A A
A

A Ar ,

N N
u

   

    
      

    
 (S56)

where we have used the definition

RSC Advances S19

B A

val

A
A

A

N
u



 
  

 
. (S57)

Rearranging Eq. (S56) gives the change in val

AN between successive iterations due to changes in

A made during the present iteration

 

   
avg

A B AA

val
val,i 1 val,i i 1 i i 1 iA
A A A A A A A

A r ,

N
N N u



  

 

 
          

 
 (S58)

where  val,i

AN is the valence population obtained by using   i

A Aw r as the atomic weighting

factors.

 Combining Eqs. (S53) and (S58), the impact of the A change felt during the i+1 charge

cycle is

 

 
avg

A B AA

i 1 iA
A A i

A r ,

cons t
N





 

 
      





. (S59)

Thus, neglecting the  avg

A Ar changes, the error during charge cycle i+1 will be

 i 1 i ons t1 c     . (S60)

Applying once more,

   
2

i 2 i 1 icons t1 1 cons t          . (S61)

Combining Eqs. (S53) with (S60) and (S61) yields

 i 2 i 1

A A i Acons t cons / ut1         (S62)

 
2i 3 i 2

A A i Acons t cons t1 / u         . (S63)

Therefore, the sum of A changes over three successive charge cycles is

   
2i 3 i

A A i Acons t cons t cons1 t1 1 / u            
 

   . (S64)

 The key to deriving an appropriate value for the constant is to note that eventually the

 avg

A Ar changes will kick in and affect  A Aw r . A reasonable value of the constant will

correspond to the sum of A changes over three successive charge cycles not overshooting the

eventual
val

AN changes even when including the eventual effects of changing  avg

A Ar on  A Aw r

. Since the eventual
val

AN change is uA times the A change, the non-overshoot condition derived

from Eq. (S64) is

   
2

1 1cons t cons t c s 1n 1o t        
 

. (S65)

The approximately optimal constant corresponds to the equality condition. Solving Eq. (S65)

yields

RSC Advances S20

3
3 2

1 1 1
const   

  
. (S66)

For 1/ 2  , we have 3const 2 4 0.41259...  

 We performed computational tests (using model systems in spreadsheet) with different 

values and different constant values, which verified Eq. (S66) yields nearly optimal convergence

performance. With the constant value from Eq. (S66), the system converges rapidly with highly

damped overshoot if the val

AN 0 constraint is binding. Using 1/ 2  ,

3const 2 4 0.41259...   , and the convergence accelerator described in Section S3.2.3,

convergence to 10-5 electrons is achieved in approximately 20 total charge cycles for the Convex

functional when the val

AN 0 constraint is binding and in approximately 14 charge cycles when

the val

AN 0 constraint is not binding.

S3.2.3 Derivation of the optimal convergence accelerator

 When using an atomic weighting factor of the form shown in Eq. (S44), the spherical

average atomic density,  avg

A Ar , is computed based on the  A Aw r that used the prior  avg

A Ar .

This causes the situation that if the estimate for  avg

A Ar in charge cycle i is too large (small), the

new estimate for  avg

A Ar in charge cycle i+1 will also be too large (small). In general, therefore,

it will take many charge cycles to work off errors in the estimated   avg

A Ar . The higher the

proportion of spherical averaging (i.e., the smaller the  value) in  A Aw r , the more pronounced

this problem will be.

 This problem can be solved using a convergence accelerator. A convergence accelerator

causes changes in the estimated   avg

A Ar to take effect in fewer charge cycles, thereby allowing

the calculation to be converged in fewer charge cycles. All feasible functional forms of a

convergence accelerator become linear as the change to   avg

A Ar becomes relatively small.

Therefore, we choose the linear form

        i 1 i i i 1

A A A A A A A Aw r r m r r      (S67)

where m is a constant and

       
 i 1

A

1
i fixed _ ref avg

A A A A A A i
r e r r

 


    . (S68)

 We begin by defining a set of variables that quantify the approach to convergence:

      i avg avg

A A A A A Ai converged
y1 r ln r r   (S69)

      i i converged

A A A A A Ay2 r ln w r w r (S70)

RSC Advances S21

where  avg

A A i
r is the value of  avg

A Ar computed during charge cycle i, and  avg

A A converged
r and

 converged

A Aw r are the final converged values of  avg

A Ar and  A Aw r , respectively. Combining

Eqs. (S68) and (S69) yields

          i converged i i 1 converged

A A A A A A A Aln r r 1 y1 r        . (S71)

According to Eq. (S67),

   converged converged

A A A Ar w r  . (S72)

In regions where atom-atom overlaps are significant (i.e.,    A Aw r W r), the spherical average

computed during charge cycle i (i.e.,  avg

A A i
r) is proportional to  i

A Aw r :

  
  

avg

A A i

i

A A

ln r
1

ln w r

 



 . (S73)

From Eq. (S73), it directly follows that

     i i i

A A A A A Ay1 r y2 r r   (S74)

where  i

A Ar quantifies the approach to convergence.

 Computational tests on real systems studied with the CHARGEMOL program, as well as

numerical model systems studied in spreadsheet, showed that convergence in the fewest number

of charge cycles is achieved when the constant m is set to the largest value giving non-oscillatory

convergence. For steady non-oscillatory convergence, the errors are reduced to a nearly constant

fraction between successive charge cycles:

 

 

i

A A

i 1

A A

r
f

r





. (S75)

Dividing Eq. (S67) by  converged

A Ar and simplifying in the limit of small  Ar and small A

yields:

                i 1 i i i 1 i 1 converged i 1 i

A A A A A A A A A A A Ar 1 r m 1 r r m                 . (S76)

 We optimize the convergence parameter m for the case where the val

AN 0 applies but is

non-binding; that is, for the case where i 1 i converged

A A A 0      . In this case, substituting Eq. (S75)

into (S76) gives

            2 i 1 i 1 i 1 i 1

A A A A A A A Af r 1 f r m 1 f r r           (S77)

which simplifies to the characteristic equation

    2f 1 m 1 f m 1 0      . (S78)

Solving Eq. (S78) gives

        
2 2

1 m 1 1 m 1 4m 1
f

2

      
 . (S79)

RSC Advances S22

The limiting value of f occurs when the discriminant (i.e., quantity under square root) is zero:

     
2 2

1 m 1 4m 1 0     (S80)

which yields

 
2

1
m

1

 



. (S81)

Substituting Eq. (S81) into (S79) yields the limiting value of f:

f 1   . (S82)

 We chose the following form for our convergence accelerator:

 
     

 

       
 

   

  
       

i 1
A

i 1
A

2 2 1 2
2 fixed _ ref avg i

A A A A A Ai 1

A A i i1
fixed _ ref avg i

A A A A
A A A A A A

e r r r
w r

1 a r a w r1 a e r r a w r





 




 


  
 

     

 (S83)

where 0 a 1  is a constant. We chose this form, because it has the key advantage of

guaranteeing  i 1

A Aw r 0  . Dividing both sides of Eq. (S83) by    converged converged

A A A Aw r r (Eq.

(S72)) and taking the logarithm yields

 

 

 

 

 

       

i 1 i i

A A A A A A

converged converged i i

A A A A A A A A

w r r r
ln ln ln

w r r 1 a r a w r

      
                   

. (S84)

Inserting Eqs. (S70) and (S71) into (S84) and simplifying for A 0  yields

     
 

       

i

A Ai 1 i

A A A A i i

A A A A

r
y2 r 1 y1 r ln

1 a r a w r


 

        
. (S85)

Inserting Eqs. (S74) and (S75) into (S85) yields

     
 

       

i

A Ai i

A A A A i i

A A A A

r
f r 1 r ln

1 a r a w r

 
          

. (S86)

For small  i

A Ar , expanding Eq. (S71) for A 0  gives

           i converged i i

A A A A A A A Ar r 1 1 y1 r 1 1 r         (S87)

where the rightmost side follows from Eq. (S74). For small  i

A Ar , expanding Eq. (S70) gives

           i converged i converged i i

A A A A A A A A A A A Aw r w r w r r 1 y2 r 1 r      (S88)

where the rightmost side follows from Eqs. (S72) and (S74). Using Eqs. (S87) and (S88) gives

 

       

   

           

i i

A A A A

i i i i
A A A A A A A A

r 1 1 r
ln ln

1 a r a w r 1 a 1 1 r a 1 r

     
                 

 (S89)

which when expanded at first-order for  i

A Ar 1 yields

RSC Advances S23

   

           
 

i

A A i

A Ai i

A A A A

1 1 r
ln a r

1 a 1 1 r a 1 r

   
    
       
 

. (S90)

Substituting Eq. (S90) into (S86) yields

      i i

A A A Af r r 1 a      . (S91)

Substituting Eq. (S82) into (S91) and solving gives the optimized convergence accelerator

parameter

1
a 1 


 . (S92)

 Notably, the rate of convergence is practically independent of the material. The largest

number of charge cycles required to converge the NACs and   avg

A Ar within

convergence_threshold e and e/bohr3, respectively, is

   Aln convergence _ threshold ln q
ch arge _ cycles 4 2

ln(f)

 
   (S93)

where qA is the maximum NAC magnitude error on the fourth charge cycle. (Recall that the first

three charge cycles are used to compute the conditioned reference density; therefore, the self-

consistent cycles begin with the fourth charge cycle.) convergence_threshold is the error on the

(last -2)th charge cycle. Two final charge cycles are required to demonstrate the NAC and

  avg

A Ar changes between successive charge cycles are below the convergence_threshold two

times in a row. The first four and last two charge cycles are thus added in Eq. (S93). We used

convergence_threshold = 10-5 e and e/bohr3 on the NACs and   avg

A Ar , respectively. A

reasonable approximation is that the NACs on the fourth charge cycle are within ~±0.2 e of the

final NACs. Substituting into Eq. (S93) with f 1 1/ 2  yields charge_cycles ≤ 14. Indeed, more

than 99% of the materials studied in this paper converged within 14 charge cycles when using the

Convex functional with the convergence accelerator.

 We performed an extensive set of computational tests confirming all aspects of the theory

described above. These computational tests included both tests on real materials using the

CHARGEMOL code as well as numerical finite difference models in spreadsheet. All aspects of the

above theory were doubly confirmed (i.e., both for the real materials and for the finite difference

models), including:

1. The errors between successive charge cycles follows a nearly constant ratio f.

2. We compared f values for m = 0 and the optimal m value (i.e., also a = 0 and the optimal a

value) for both  = 1/2 and 1/3. All of the computational results were in precise agreement

with Eq. (S79). In these cases, the number of charge cycles required for convergence

closely followed Eq. (S93).

3. As m and a are decreased below their optimal values, the calculation takes more charge

cycles to converge. As m and a are increased above their optimal values, the calculations

RSC Advances S24

do not converge in fewer charge cycles. As m and a are increased to unreasonably large

values (i.e., many times larger than their optimal values) the calculations begin to oscillate

notably.

S3.2.4 Convergence speed of spin partitioning

 Finally, we note that the DDEC spin partitioning methodS4 follows a similar

convergence law as that noted above for the Convex functional. Specifically, the spin

partitioning method uses
spin 1/ 2  which utilizes a geometric average between  avg

A Am r and

 proportional

A Am r .S4 The DDEC spin partitioning method uses an optimized convergence algorithm

that achieves convergence as rapidly as feasible.S4 For the same reasons as described above, the

DDEC spin partitioning method converges at the same rate for all materials with a constant error

fraction between successive spin cycles. Theoretical analysis shows the optimal f value depends

only on  independent of the particulars of the optimization scheme. Specifically, the analog of

Eq. (S82) is

spin spinf 1   . (S94)

Using
spin 1/ 2  , this means the ASM errors on spin cycle i+1 are only about 29% as large as the

errors on spin cycle i. We confirmed this prediction using numerous computational tests on real

collinear and non-collinear magnetic materials. For both collinear and non-collinear magnetism,

the required number of spin cycles follows this analog of Eq. (S93):

   A

spin

ln spin _ threshold ln M
spin _ cycles 1 1

ln(f)

 
   (S95)

where AM is the maximum ASM magnitude error on the first spin cycle. In Eq. (S95), the first

+1 accounts for the first spin cycle. spin_threshold is the error on the (last -1)th spin cycle. A final

spin cycle is required to demonstrate the ASM changes are below the spin_threshold; this accounts

for the second +1 appearing in Eq. (S95). For spin partitioning, we used a spin_threshold of
55 10 electrons with

spin 1/ 2  . Substituting these values into Eq. (S95) yields

spin _ cycles 9 . (S96)

Indeed, all of the collinear and non-collinear magnetic materials we have examined to date

followed Eq. (S96). All of the DDEC methods use the same spin partitioning algorithm.S4 Thus,

the spin partitioning convergence properties are equivalent whether using the DDEC3, DDEC6, or

Convex functional for charge partitioning. In summary, a key advantage of our methodology is

that both the charge and spin partitioning converge within a small number of cycles for all

materials.

S4. Flow Diagrams for the DDEC6 Method

S4.1 Algorithm for computing   cond

A Ar

 As shown in Figure S1, a robust and rapidly converging iterative algorithm was used to

compute   cond

A Ar . In each iteration, an estimate of
I

A is used to compute the estimate

RSC Advances S25

     cond avg I avg

A A A A A A Ar Y r Y r   . (S97)

Then, constraint

 
 cond

A AI

A

A

d r
r 0

dr


   (S98)

 is enforced by recursively setting

      cond cond cond

A A A A A A Ar min r , r r     (S99)

beginning with the second radial shell and continuing outward until the last radial shell. To

complete one iteration, I

A is computed via

   
cutoffr

2I cond ref

A A A A A A A

0

r 4 r dr z q 0       . (S100)

A scheme is required to generate a new I

A estimate for the next iteration. Since I

A is a

monotonically increasing function of I

A , I

A should be increased (decreased) when I

A 0  (

I

A 0 ). Convergence is achieved when I

A is less than some zero tolerance (e.g., 10-10 electrons).

 The update scheme we used contained the following sequence of steps. In the first iteration,

we set I (1)

A 0  . Then we set

   
cutoff

I (i)
I (i 1) I (i) A
A A r

2avg

A A A A

0

2

Y r 4 r dr

 
   



 (S101)

where
I (i)

A is the result of using
I (i)

A . Because
I (1)

A 0  if constraint (S98) is binding,

repetitively applying Eq. (S101) increases
I (i 1)

A

 until
I (i)

A 0  . Since
I (i 1)

A

 more than doubles

between successive iterations, the number of iterations required to reach this upper bound is small.

At this point, we stop using Eq. (S101) and set
I (upper)

A as the smallest known value yielding

I (upper)

A 0  . We also set
I (lower)

A as the largest known value yielding
I (lower)

A 0  . The remainder

of the steps are simply aimed at squeezing the upper and lower bounds as quickly as possible. First,

we try the midpoint  I (mid) I (upper) I (lower)

A A A 2    to get
I (mid)

A . Then, we fit the triple of points

 I (lower) I (lower)

A A,  ,  I (mid) I (mid)

A A,  ,  I (upper) I (upper)

A A,  to a parabola. Then, we set
I (parabolic)

A

equal to the root of the parabola where
I (parabolic)

A is predicted to be zero. After computing the

actual value of
I (parabolic)

A via Eq. (S100), we identify which points among
I (lower)

A ,
I (mid)

A ,

I (upper)

A , and
I (parabolic)

A are the closest to zero from above (i.e.,
I (above)

A) and below (i.e.,
I (below)

A

). A linear interpolation between these two closest-to-zero points is performed to identify

RSC Advances S26

I (corrector)

A as the point where I (corrector)

A is predicted to be: (a) I (above)

A if I (above) I (below)

A A3    ,

(b) I (below)

A if I (below) I (above)

A A3    , and (c)  I (above) I (below)

A A 2  otherwise. This procedure

places I

A 0  approximately half-way between I (corrector)

A and I (above)

A or I (below)

A (whichever is

smaller in magnitude), subject to the constraint that the resulting interval size is cut in half or better.

At the close of this iteration, we identify the new lower (upper) bound as the largest (smallest) I

A

among I (lower)

A , I (mid)

A , I (upper)

A , I (parabolic)

A , and I (corrector)

A yielding a corresponding I

A 0  (

I

A 0 ). Having refined the lower and upper bounds, we repeat the bisection, parabolic fitting,

and linear interpolation steps in the next iteration to reach a tighter yet lower and upper bound.

This process is repeated until convergence. Because this algorithm cuts the size of the search

domain by better than half in each reshaping cycle, it is mathematically guaranteed to always

converge to the correct solution in a few reshaping cycles. In practice, we found this process

converges magnificently, with one or two cycles of parabolic fitting and linear interpolation

usually sufficient to achieve a precision of 10-10 electrons.

RSC Advances S27

Set

Parabolic fitting of

,

,

Identify new lower and upper bounds as the largest and

smallest among , , , ,

and yielding and , respectively.

End

Set upper bound as =smallest value yielding

Set lower bound as =largest value yielding

Get midpoint with

= root of the fitted parabola. Use this value to

compute

Identify which , , ,

and are the closest to zero from

above and below

Is or

 ?

Yes No

Find until

Is

?

Choose

Is

?
Choose

Is

or

?

End

End

Is

?

NOTE: Every time is updated, it is used to compute

and we enforce the constraint

by

to finally find

Is

?

Yes

Yes

Yes

No

No

No

Yes

Yes

No

No

Figure S1: Flow diagram

for computing the

conditioned reference

densities subject to the

applied constraints.

RSC Advances S28

S4.2 Summary of the seven charge partitioning steps comprising the DDEC6 method

Charge Partitioning Step 1:

Calculation of reference ion

charges from neutral atom

reference densities:

Charge Partitioning Step 2:

Calculation of reference ion

charges from

reference ion densities:

Charge Partitioning Step 3:

Condition the reference ion

densities to match to the

specific material of interest.

These conditioned reference

densities, , are

constrained to monotonically

decrease and integrate to the

correct number of electrons.

Initialize the following quantities: , completed_steps = 3, , and charge_cycle = 4.

Compute and store:

Compute and store for current position only:

Compute and store:

Determine the value of update_kappa:

(A) If charge_cycle = 4, set update_kappa = FALSE

(B) If charge_cycle > 4:

(i) set update_kappa = TRUE if < -10-5 for any atom

(ii) if update_kappa = TRUE and the changes between successive charge cycles were

less than 10-5 electrons for each atom two consecutive times in a row then reset

update_kappa = FALSE and = .

(iii) else the value of update_kappa is left unchanged

completed_steps = 7 ? End

update_kappa

completed_steps = completed_steps + 1

FALSE

TRUE

Update the A Lagrange multiplier:

if , then

else

where is the value before update

No

Yes

Figure S2: Flow diagram summarizing the

seven charge partitioning steps of the

DDEC6 method

Compute and store: and

Update the atomic weighting factors:

charge_cycle = charge_cycle + 1

Compute and store:

Apply constraints to ensure

atom tails not too diffuse:

Reshape to get

 as shown in Figure S3.

Use this sequence to

apply constraints ensuring atom tails not too contracted:

RSC Advances S29

S4.3 Algorithm for computing   A AG r

 As shown in Figure S3, a robust and rapidly converging iterative algorithm was used to

compute   A AG r . In each iteration, an estimate of II

A is used to compute the estimate

     II

A A A A A A AG r r r    . (S102)

Then, the constraint

 
 

   A AII lower

A A A A A

A

dG r
r r G r 0

dr
    (S103)

       2lower 1

A A A Ar 1.75 bohr 1 r    (S104)

 is enforced by recursively setting

         lower

A A A A A A A A A AG r min G r ,G r r exp r r    (S105)

beginning with the second radial shell and continuing outward until the last radial shell. To

complete one iteration, II

A is computed via

      
cutoffr

2II

A A A A A A A

0

G r r 4 r dr    . (S106)

A scheme is required to generate a new II

A estimate for the next iteration. Since II

A is a

monotonically increasing function of II

A , II

A should be increased (decreased) when II

A 0  (

II

A 0 ). Convergence is achieved when II

A is less than some zero tolerance (e.g., 10-10 electrons).

The update scheme we used contained the sequence of steps shown in Figure S3. These steps are

analogous to those described in Section S4.1 above, except that
II

A ,
II

A ,  A AG r , and  A Ar

replace
I

A ,
I

A ,  cond

A Ar , and  avg

A AY r . Because our algorithm cuts the size of the search

domain by better than half in each reshaping cycle, it is mathematically guaranteed to always

converge to the correct solution in a few reshaping cycles. In practice, we found this process

converges magnificently, with one to three cycles of parabolic fitting and linear interpolation

usually sufficient to achieve a precision of 10-10 electrons.

RSC Advances S30

Set

Parabolic fitting of

,

,

Identify new lower and upper bounds as the largest and

smallest among , , , ,

and yielding and , respectively.

End

Set upper bound as =smallest value yielding

Set lower bound as =largest value yielding

Get midpoint with

= root of the fitted parabola. Use this value to

compute

Identify which , , ,

and are the closest to zero from

above and below

Is or

 ?

Yes No

Find until

Is

?

Choose

Is

?
Choose

Is

or

?

End

End

Is

?

NOTE: Every time is updated, it is used to compute

and we enforce the constraint

by

to finally find

Is

?

Yes

Yes

Yes

No

No

No

Yes

Yes

No

No

Figure S3: Flow diagram

for computing

RSC Advances S31

References:

S1. A. D. Becke, J. Chem. Phys. 1988, 88, 2547-2553.

S2. G. T. Velde and E. J. Baerends, J. Comput. Phys. 1992, 99, 84-98.

S3. T. A. Manz and D. S. Sholl, J. Chem. Theory Comput. 2012, 8, 2844-2867.

S4. T. A. Manz and D. S. Sholl, J. Chem. Theory Comput. 2011, 7, 4146-4164.

