## **Supporting Information**

## **Fabrication and Electrochemical Performance of Novel Hollow**

## **Microporous Carbon Nanospheres**

Luyi Chen, <sup>*a,b*</sup> Yeru Liang,\*<sup>*a*</sup> Hao Liu, <sup>*a*</sup> Weicong Mai, <sup>*a*</sup> Zhiyong Lin,\* <sup>*b*</sup> Hongji Xu, <sup>*a*</sup> Ruowen Fu<sup>*a*</sup> and Dingcai Wu\* <sup>*a*</sup>

<sup>a</sup> Materials Science Institute, PCFM Laboratory, School of Chemistry and Chemical

Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China

<sup>b</sup> Department of Material Science and Engineering, Huaqiao University, Xiamen,

361021, P. R. China



Fig. S1 FTIR spectrum of SiO<sub>2</sub> nanoparticles and functionalized SiO<sub>2</sub> nanoparticles.



Fig. S2 SEM image of  $SiO_2$  nanoparticles.



Fig. S3 Particle size distribution from SEM image analysis of (A) SiO<sub>2</sub> nanoparticles,(B) SiO<sub>2</sub>@PS nanospheres, (C) SiO<sub>2</sub>@xPS-24 nanospheres and (D) HCMNS-24.



Fig. S4 DLS curves of (A) functionalized SiO<sub>2</sub> nanoparticles, (B) SiO<sub>2</sub>@PS nanospheres, (C) SiO<sub>2</sub>@xPS-24 nanospheres and (D) HCMNS-24.

(1) Formation of carbocation <sup>+</sup>CCl<sub>3</sub>



(2) Formation of -CCl<sub>2</sub>- crosslinking bridges



(3) Formation of -CO- crosslinking bridges



Fig. S5 Formation mechanism of -CO- crosslinking bridges based on the Friedel-Crafts reaction of polystyrene chain and carbon tetrachloride and subsequent hydrolysis.<sup>[S1]</sup>



Fig. S6 FTIR spectrum of SiO<sub>2</sub>@PS nanospheres and SiO<sub>2</sub>@xPS-24 nanospheres.



Fig. S7 (A) N<sub>2</sub> adsorption-desorption isotherm and (B) DFT pore size distribution of SiO<sub>2</sub>@*x*PS-24.



Fig. S8 DFT pore size distribution of carbonized SiO<sub>2</sub>@*x*PS-24.



Fig. S9 Core size distribution of HMCNS-24 based on TEM image analysis.



Fig. S10 Shell thickness distribution of HMCNS-24 based on TEM image analysis.



Fig. S11 High-resolution TEM image of HCMNS-24.



Fig. S12 XRD pattern of HMCNS-24.







Fig. S14 SEM images of SiO<sub>2</sub>@xPS nanospheres under different hypercrosslinking

reaction times: (A) 0.25 h, (B) 1 h, (C) 2 h, (D) 8 h, (E) 24 h and (F) 48 h.



Fig. S15 SEM images of (A) HCMNS-0.25, (B) HMCNS-1, (C) HMCNS-2, (D)

HMCNS-8, (E) HMCNS-24 and (F) HMCNS-48.



Fig. S16 BET surface areas of HCMNS-0.25, HMCNS-1, HMCNS-2, HMCNS-8,

HMCNS-24 and HMCNS-48.



Fig. S17 SEM images of HMCNSs obtained at various carbonization conditions, including (A) 700 °C, (B) 800 °C and (C) 1000 °C at 5 °C min<sup>-1</sup> for 3 h; (D) 1 h, (E) 2 h, (F) 10 h at 900 °C with 5 °C min<sup>-1</sup>; (G) 1 °C min<sup>-1</sup>, (H) 2 °C min<sup>-1</sup> and (I) 10 °C min<sup>-1</sup> at 900 °C for 3 h.



Fig. S18 (A) TEM image of  $SiO_2@xPS-24$  without silica cores, (B) SEM and (C) TEM images of control carbon sample.



Fig. S19 (A) CV plots for the first 3 cycles at the scan rate of 0.1 mV s<sup>-1</sup>, (B) rate performances at different current densities of HMCNS-24.



Fig. S20 (A) CV curves at the sweep rate of 25 mV s<sup>-1</sup>, (B) Nyquist plots for HMCNS-24 and YP-50.



Fig. S21 DFT pore size distribution of YP-50. From the DFT pore size distribution curve, it can be clearly seen that YP-50 is microporous carbon material.



Fig. S22 SEM image of YP-50. From SEM image, it can be seen that the diameter of carbon particle of YP-50 is mainly micron-scale.



Fig. S23 Long-term cycling stability over 5,000 cycles for HMCNS-24 at a current density of 1A  $g^{-1}$ ; the inset shows the charging-discharging curves for the first and last five cycles.

| Sample                              | $\frac{S_{BET}}{(m^2 g^{-1})}$ | $\frac{S_{ext}}{(m^2 g^{-1})}$ | $\frac{S_{mic}}{(m^2 g^{-1})}$ | $\frac{V_t}{(cm^3 g^{-1})}$ | $\frac{V_{mic}}{(cm^3 g^{-1})}$ |
|-------------------------------------|--------------------------------|--------------------------------|--------------------------------|-----------------------------|---------------------------------|
| SiO <sub>2</sub> @xPS-24            | 287                            | 127                            | 160                            | 0.22                        | 0.07                            |
| carbonized SiO <sub>2</sub> @xPS-24 | 396                            | 317                            | 79                             | 0.24                        | 0.15                            |
| HMCNS-24                            | 1166                           | 583                            | 583                            | 1.36                        | 0.27                            |
| YP-50                               | 1396                           | 1022                           | 374                            | 0.73                        | 0.47                            |

Table S1 Pore structure parameters of typical samples.

Table S2 Comparison of the cycling performance of hollow or solid carbon spheres as

|                             | Sample                                         | Stable<br>capacity<br>(mA h g <sup>-1</sup> ) | Current<br>density<br>(mA g <sup>-1</sup> ) | Cycle<br>number | Voltage<br>range<br>(V) | Ref.         |
|-----------------------------|------------------------------------------------|-----------------------------------------------|---------------------------------------------|-----------------|-------------------------|--------------|
| Hollow<br>carbon<br>spheres | HMCNS                                          | 620                                           | 100                                         | 50              | 0-3                     | This<br>work |
|                             | Hollow carbon nanospheres                      | 310                                           | 372                                         | 200             | 0-3                     | S2           |
|                             | Carbon hollow particles                        | 330                                           | 0.15<br>(mA cm <sup>-2</sup> )              | 5               | 0-1.5                   | S3           |
|                             | Hollow carbon nanoparticles                    | 443                                           | 50                                          | 75              | 0-3                     | S4           |
|                             | Interconnected hollow carbon nanospheres       | 630                                           | 37.2                                        | 50              | 0-3                     | S5           |
|                             | Hollow graphitic carbon nanospheres            | 391                                           | 37.2                                        | 60              | 0-3                     | S6           |
|                             | Nanographene-constructed hollow carbon spheres | 600                                           | 74.4                                        | 30              | 0-3                     | S7           |
|                             | Hollow graphene oxide spheres                  | 485                                           | 0.2<br>(mA cm <sup>-2</sup> )               | 30              | 0-2.5                   | S8           |
|                             | Hard carbon nano-spherules                     | 475                                           | 0.2<br>(mA cm <sup>-2</sup> )               | 20              | -0.15-2.5               | S9           |
| Solid<br>carbon<br>spheres  | Carbon nanospheres                             | 420                                           | 60                                          | 60              | 0-3                     | S10          |
|                             | Nitrogen-doped carbon nanoparticles            | 423                                           | 37.2                                        | 100             | 0-3                     | S11          |
|                             | Porous carbon microspheres                     | 450                                           | 50                                          | 50              | 0-2                     | S12          |

lithium-ion battery anodes in the references.

| Sample                      |                                          | Current<br>density           | Capacitance retention ratio |           |                         |  |
|-----------------------------|------------------------------------------|------------------------------|-----------------------------|-----------|-------------------------|--|
|                             |                                          |                              | Ref.                        |           | HMCNS-24<br>(This work) |  |
| Hollow<br>carbon<br>spheres | Hollow carbon spheres                    | 1-20<br>A g <sup>-1</sup>    | 75.7 %                      | S13       | 81.2 %                  |  |
|                             | N- and O-doped hollow<br>carbon spheres  | 0.5-5<br>A g <sup>-1</sup>   | 42.9 %                      | S14       | 87.8 %                  |  |
|                             | Hollow carbon spheres                    | 0.2-1<br>A g <sup>-1</sup>   | 60.6 %                      | S15       | 91.1 %                  |  |
|                             | Hierarchical porous carbon hollow-pheres | 0.5-10<br>A g <sup>-1</sup>  | 73 %                        | S16       | 81.9 %                  |  |
|                             | Hollow carbon nanospheres                | 0.05-10<br>A g <sup>-1</sup> | 81.8 %                      | S17       | 65.0 %                  |  |
|                             | Hollow carbon nanospheres                | 0.1-10<br>A g <sup>-1</sup>  | 79.0 %                      | S18       | 73.4 %                  |  |
|                             | Nitrogen-rich hollow<br>porous carbon    | 0.5-10<br>A g <sup>-1</sup>  | 66.1 %                      | S19       | 81.9 %                  |  |
|                             | N-doped hollow carbon spheres            | 0.5-10<br>A g <sup>-1</sup>  | 55.6 %                      | S20       | 81.9 %                  |  |
| Solid<br>carbon<br>spheres  | Solid carbon nanospheres                 | 0.1-10<br>A g <sup>-1</sup>  | 75.7 %                      | S18       | 73.4 %                  |  |
|                             | Mesoporous carbon<br>spheres             | 0.5-30<br>A g <sup>-1</sup>  | 70.2 %                      | S21       | 65.2 %                  |  |
|                             | Monodisperse Carbon<br>Spheres           | 1-50<br>mV s <sup>-1</sup>   | 68.4 %                      | S22       | 81.3 %                  |  |
| Activated<br>carbon         | YP-50                                    | 0.05-10<br>A g <sup>-1</sup> | 23.6 %                      | This work | 65.0 %                  |  |

Table S3 Comparison of the capacitance retention ratios of HMCNS-24 and other carbon spheres as high-performance supercapacitor electrode in the references.

## References

- (S1) Wu, D. C.; Nese, A.; Pietrasik, J.; Liang, Y. R.; He, H. K.; Kruk, M.; Huang, L.; Kowalewski, T.; Matyjaszewski, K. Acs Nano 2012, 6, 6208.
- (S2) Tang, K.; White, R. J.; Mu, X. K.; Titirici, M. M.; van Aken, P. A.; Maier, J. ChemSusChem 2012, 5, 400.
- (S3) Zhang, H. J.; Xu, H. F.; Zhao, C. Mater. Chem. Phys. 2012, 133, 429.
- (S4) Yang, Z. C.; Zhang, Y.; Kong, J. H.; Wong, S. Y.; Li, X.; Wang, J. Chem. Mater. 2013, 25, 704.
- (S5) Han, F. D.; Bai, Y. J.; Liu, R.; Yao, B.; Qi, Y. X.; Lun, N.; Zhang, J. X. Adv. Energy Mater. 2011, 1, 798.
- (S6) Feng, J.; Li, F.; Bai, Y. J.; Han, F. D.; Qi, Y. X.; Lun, N.; Lu, X. F. Mater. Chem. Phys. 2013, 137, 904.
- (S7) Yang, S. B.; Feng, X. L.; Zhi, L. J.; Cao, Q. A.; Maier, J.; Mullen, K. Adv. Mater. 2010, 22, 838.
- (S8) Guo, P.; Song, H. H.; Chen, X. H. J. Mater. Chem. 2010, 20, 4867.
- (S9) Hu, J.; Li, H.; Huang, X. Solid State Ionics, 2007, 178, 265-271.
- (S10) Wang, Y.; Su, F. B.; Wood, C. D.; Lee, J. Y.; Zhao, X. S. Ind. Eng. Chem. Res. 2008, 47, 2294.
- (S11) Bhattacharjya, D.; Park, H. Y.; Kim, M. S.; Choi, H. S.; Inamdar, S. N.; Yu, J. S. Langmuir 2014, 30, 318.
- (S12) Zhang, L.; Zhang, M. J.; Wang, Y. H.; Zhang, Z. L.; Kan, G. W.; Wang, C. G.; Zhong, Z. Y.; Su, F. B. J. Mater. Chem. A 2014, 2, 10161.
- (S13) Fang, X. L.; Zang, J.; Wang, X. L.; Zheng, M. S.; Zheng, N. F. J. Mater. Chem. A, 2014, 2, 6191.
- (S14) Yuan, C.Q.; Liu, X. H.; Jia, M. Y.; Luo, Z. X.; Yao, J. N. J. Mater. Chem. A 2015, 3, 3409.
- (S15) Chen, X.; Kierzek, K.; Cendrowski, K.; Pelech, I.; Zhao, X.; Feng, J.; Kalenczuk, R.; Tang, T.; Mijowska, E. Colloid. Surface. A 2012, 396, 246.
- (S16) Han, Y.; Dong, X. T.; Zhang, C.; Liu, S. X. J. Power Sources 2012, 211, 92.
- (S17) Xu, F.; Tang, Z. W.; Huang, S. Q.; Chen, L. Y.; Liang, Y. R.; Mai, W. C.; Zhong, H.; Fu, R. W.; Wu, D. C. Nat. Comm. 2015, 6, 7221.
- (S18) Wang, C. W.; Wang, Y.; Graser, J.; Zhao, R.; Gao, F.; O'Connell, M. J. ACS nano 2013, 7, 11156.
- (S19) Liu, X.H.; Zhou, L.; Zhao, Y. Q.; Bian, L.; Feng, X. T.; Pu, Q. S. ACS Appl. Mater. Interfaces 2013, 5, 10280.
- (S20) Han, J. P.; Xu, G. Y.; Ding, B.; Pan, J.; Dou, H.; MacFarlane, D. R. J. Mater. Chem. A 2014, 2, 5352.
- (S21) Li, Q.; Jiang, R. R.; Dou, Y. Q.; Wu, Z. X.; Huang, T.; Feng, D.; Yang, J. P.; Yu, A. S.; Zhao, D. Y. *CARBON*, 2011, 49, 1248.
- (S22) Tanaka, S.; Nakao, H.; Mukai, T.; Katayama, Y.; Miyake, Y. J. Phys. Chem. C 2012, 116, 26791.