Appendix A

continence Supporting information for:

Performance, combustion and emission characteristics of a direct injection VCR CI engine using *Jatropha curcas* oil microemulsion: A comparative assessment with JCO B100, JCO B20 and Petrodiesel

Himansh Kumar, Lakhya Jyoti Konwar, Mohammad Aslam, Anil Kumar Sarma*

Sardar Swaran Singh National Institute of Bio-Energy (An autonomous institute of Ministry of New and Renewable Energy, Govt. of India), Kapurthala-144601 (Punjab), India

1. Experimental

1.1. Biodiesel preparation

JCO B100 was obtained by transestefication of pretreated/esterified JCO with methanol in the presence of 1 wt% NaOH (99.9%, Merck) as catalyst. NaOH was weighed separately of the total amount of oil (1200 g) using standard weighing balance and dissolved in required quantity of anhydrous methanol (mole ratio of oil to methanol was ~1:9) at 50 °C. The reaction mixture was vigorous stirred (500 rpm) and heated to at 60 °C for 30 min in 2 L capacity Jacketed Lab Reactor (Radleys) equipped with mechanical stirring and reflux condenser. After completion of the reaction, excess methanol was removed with a rotary evaporator (Heidolph Hei-VAP). The resulting product was neutralized with by washing with warm deionised water. Finally the product JCOB100 was recovered in a separatory funnel, dried in an oven (105 °C) and anhydrous Na₂SO₄ prior to use. 200 ml of the biodiesel (B100) was taken mixed with 800 ml of petroleum diesel (IOCL, LDO) to prepare the JCO B20 blend.

1.2. Determination of activation energy

Calculation of activation energy was done using Coats and Redfern method. Coats and Redfern method is an integral method used for non-isothermal kinetic analysis. This method eliminates the rate constant and gives activation energy and frequency factor directly. The equations used in calculation are:

$$\ln\left[\frac{1-(1-x)^{(1-n)}}{T^{2}(1-n)}\right] = \ln\left(\frac{AR}{\beta E_{a}}\right) \left[1-\frac{2RT}{E_{a}}\right] - \frac{E_{a}}{RT} \quad (for \ n \neq 1)$$
(1)

and

$$\ln\left[\frac{ln^{[10]}(1-x)}{T^2}\right] = \ln\left(\frac{AR}{\beta E_a}\right) \left[1 - \frac{2RT}{E_a}\right] - \frac{E_a}{RT} \quad (for \ n=1)$$
(2)

where, x is the fractional weight loss. In Eq. (2) except fractional weight loss (x) and TGA temperature T (also refer to Figure S3), other parameters are constant. Thus plotting a graph $\ln \left[\frac{ln \frac{m}{m}(1-x)}{T^2}\right]_{and} \frac{1}{T}$ the value of $-\frac{E_a}{R}$ can be obtained, from which activation energy (E_a) can be calculated.

1.3. Equations used in the determination of performance parameters

Brake power is given by:

$$BP(kw) = \frac{2 \times \Pi \times W \times R}{60000}$$
$$BP(kw) = \frac{0.785 \times RPM \times W \times 9.81 \times arm \, lenegth}{60000}$$
(3)

Where, W = 9.81 kg, R = radius (m), arm length = 0.00185 (m)

Brake thermal efficiency (η_{bte}) can be expressed as follows:

$$\eta_{bte} = \frac{BP \times 3600 \times 100}{fuel flow rate (kg/hr) \times calorific value (KJ/kg)}$$
(4)

Indicated thermal efficiency (η_{ite}):

 $\eta_{ite} = \frac{indicated \ power}{fuel \ energy}$ $\eta_{ite} = \frac{IP \times 3600 \times 100}{fuel \ flow \ rate \ (kg/hr) \times calorific \ value \ (kJ/kg)}$ (5)

Mechanical Efficiency:

$$\eta_{mech} = \frac{BP \times 100}{IP} \tag{6}$$

Volumetric efficiency (%) is given by:

$$\% Vol = \frac{air flow rate \times 100}{\left(\frac{\Pi}{4}\right) \times D^2 \times \left(\frac{N}{n}\right) \times no \ of \ cycle \times A_{den}}$$
(7)

Where, air flow rate (kg/hr):

Air flow rate
$$(kg/hr) = C_d \times \frac{\Pi}{4} \times D^2 \times \sqrt{2gh_{water}} \times \frac{W_{den}}{A_{den}} \times A_{den} \times 3600$$
 (8)

Where, $C_d = Co$ -efficient of discharge of orifice, D = Orifice diameter in meter, g = accelerationdue to gravity (m/s²) = 9.81 m/s², h = differential head across orifice (m of water), W_{den} = Water density (kg/m³) =@1000 kg/m³, A_{den} = p/RT = Air density at working condition (kg/m³). Here, p is atmospheric pressure in kgf/m² (1 Standard atm = 1.0332 x10⁴ kgf/m²), R is Gas constant (29.27 kgfm/kgK) and T is atmospheric Temperature at K.

Brake specific energy consumption (BSEC) was evaluated from:

$$BSFC = \frac{fuel \, flow \, rate \, (kg/hr)}{BP} \tag{9}$$

Table S1

T 1 · 10	· · ·	0.1	OT.	• .		1 .	.1	. 1
Loophilool N	nooitiontiona	of tho	'l on	aina t	oot rio	11000 11	thou	tudy.
I COMPLEA I O	Deennealions			שוווכ ני	COLITE	uscu II	ппса	SLUUV
				·				

Experimental test rig.	Variable Compression Ratio Diesel Engine test setup with			
	4 stroke single cylinder (Computerized)			
Test rig. code	234			
Make	Kirloskar			
Туре	1 cylinder, 4 stroke, D.I diesel engine			
Power	3.5 KW @ 1500 rpm			
Bore & stroke	87.5 mm & 110 mm			
Capacity	661 CC			
Cooling method	Water cooled			
Compression Ratio range	12:1 to 18:1			
Dynamometer	Water cooled eddy current type dynamometer with loading unit			
Air box	M S fabricated with orifice meter and manometer			
Temperature sensor	Type RTD, PT100 and Thermocouple, Type K			
Crank angle sensor	Range 5000 PSI, with low noise cable			
Piezo sensor	Range 5000 PSI, with low noise cable			
Crank angle sensor	Resolution 1 Deg, Speed 5500 RPM with TDC pulse.			
Rotameter	Engine cooling 40-400 LPH; Calorimeter 25-250 LPH			
Data acquisition Software	"EnginesoftLV" Engine performance analysis software Version 9.0			
Load indicator	Digital, Range 0-50 Kg, Supply 230VAC			
Load sensor	Load cell, type strain gauge, range 0-50 Kg			
Fuel flow transmitter	DP transmitter, Range 0-500 mm WC			
Air flow transmitter	DP transmitter, Range 0-500 mm WC			

Measured quality	Measuring range	Resolution	Accuracy
CO:	0-10 % vol	0.01 % vol	<0.6 % vol: \pm 0.03 % vol >0.6 % vol: \pm 5% of ind Val
CO ₂ :	0-20 % vol	0.1 % vol	$<10\%$ vol: $\pm 0.5\%$ vol $>10\%$ vol: $\pm 5\%$ vol
HC:	0-20000 ppm vol	≤ 2000:1 ppm vol >2000:10 ppm vol	$<200 \text{ ppm vol}: \pm 10 \text{ ppm vol}$ $\geq 200 \text{ ppm vol}: \pm 5\% \text{ of ind.Val}.$
O _{2:}	0-22 % vol	0.01 % vol	$<2 \%$ vol: $\pm 0.1 \%$ vol $\geq 2 \%$ vol: $\pm 5\%$ of vol
NO:	0-5000 ppm vol	1 ppm vol	-<500 ppm vol: ± 50 ppm vol ≥500 ppm vol: ± 10% of ind. Val
Miscellaneous			
Power consumption:	$\approx 25 \text{ W}$		
Connector CAL. Gas:	60-140 l/h, max. overpressure 450 hPa		
Connector Gas In:	\approx 180 l/h, max. overpressure 450 hPa		
Dimension (WxDxH):	270 320	x 85 mm ³	

Table S2					
Technical Specifications	of the gas	analvzer	used in	this	work

Table S3

List of standard test methods used in the study

Parameter	Standard Methods			
Density (40 °C, g/cc)	ASTM D-1250-08 & DIN 51757			
Kinematic Viscosity (cSt)	ASTM D-445 & D-2171			
Calorific value (MJ/kg)	IS: 1359-1959, BS 1016: Part 5:1967, IP 12/63T			
Acidity index (mgKOH/g)	A.O.C.S. Official Method Ca 5a-40			
Flash point (°C)	D93			
Pour point (°C)	D2500			
Fatty acid composition	EN14103			

Figure S1. Brake power as a function of engine load for the test fuels (the engine was operating at constant speed of 1500 rpm)

Figure S2. TGA patterns of JCO MHBF, JCO oil and JCO B100 in air.