Supporting Information

The influence of small amounts of linear polycaprolactone chains on the crystallization of cyclic analogue molecules

Juan V López^a, Ricardo A Pérez-Camargo^{a,b}, Boyu Zhang^c, Scott M Grayson^c and Alejandro J Müller^{*a,b,d}

Avrami Fit

The Avrami Fit was performed using an Origin[®] software application called *Polymer Crystallization Plugin*. This Origin[®] plugin was developed by Lorenzo *et al.* (Polymer Testing **26** (2007) 222). The Plugin is offered free upon request to Prof. A.J. Müller.

The data obtained by isothermal Differential Scanning Calorimetry (DSC) tests were used to perform the Avrami Fits. The parameters obtained are show from Table S1 to Table S2.

Table S1.	Parameters	Obtained	by Fitting t	he Avrami	Theory	to the 3k	kg/mol sa	amples (e	e.g., [Data
Shown in	Figure 9a).									

Sample	T_c (°C)	п	K x10 ⁵	$K^{1/n} x 10^3$	$ au_{1/2t}$	$ au_{1/2e}$	1/ τ _{50%}	R ²
			(min ⁻ⁿ)	(min ⁻¹)	(min)	(min)	(min ⁻¹)	
	45	3.6	20064	640	1.41	1.45	0.69	1.0000
	46	3.2	10307	492	1.81	1.83	0.55	1.0000
C-PCL 3k	47	3.4	2818	350	2.56	2.60	0.39	1.0000
	48	3.7	501	239	3.72	3.83	0.26	1.0000
	49	3.3	448	194	4.72	4.82	0.21	1.0000
	50	3.3	129	133	6.74	6.95	0.14	1.0000
	51	3.1	72	97	9.05	9.20	0.11	1.0000
	52	3.2	18	68	13.08	13.35	0.08	1.0000
	53	2.9	15	48	18.41	18.52	0.05	0.9999
	40	3.1	112843	1040	0.86	0.87	1.15	1.0000
	41	3.0	43520	758	1.17	1.17	0.86	0.9999
	42	3.2	13280	532	1.69	1.70	0.59	1.0000
C/L 95/5 3k	43	3.0	5644	384	2.30	2.28	0.44	0.9999
	44	3.0	2043	273	3.24	3.22	0.31	0.9999
	45	3.0	649	187	4.73	4.73	0.21	0.9999
	46	3.1	181	130	6.87	6.93	0.14	1.0000
	47	2.7	184	97	9.28	9.25	0.11	0.9999
	39	3.1	216424	1283	0.70	0.72	1.39	1.0000
	40	3.5	74904	921	0.98	1.02	0.98	1.0000
	41	3.3	31175	702	1.27	1.28	0.78	1.0000
C/L 90/10 3k	42	3.3	12744	536	1.67	1.68	0.59	1.0000
	43	3.5	3428	381	2.34	2.37	0.42	1.0000
	44	3.7	984	287	3.20	3.27	0.31	1.0000
	45	3.5	437	212	4.23	4.33	0.23	1.0000
	46	3.8	63	144	6.20	6.40	0.16	1.0000
	42	3.0	116916	1053	0.84	0.87	1.15	1.0000
	43	3.4	35200	736	1.22	1.28	0.78	1.0000

	44	3.4	11989	536	1.68	1.77	0.57	1.0000
C/L 80/20 3k	45	3.5	3281	377	2.38	2.50	0.40	1.0000
	46	3.5	1200	283	3.24	3.42	0.29	1.0000
	47	3.8	157	183	4.93	5.25	0.19	1.0000
	48	3.9	29	124	7.13	7.62	0.13	0.9999
	49	3.6	18	91	9.81	10.47	0.10	1.0000
	50	3.8	3	65	13.92	14.58	0.07	1.0000
	37	2.5	51106	765	1.13	1.22	0.82	0.9989
	38	2.2	23699	520	1.61	1.70	0.59	0.9995
	39	2.4	9735	379	2.30	2.45	0.41	0.9995
L-PCL 3k	40	2.4	4022	262	3.33	3.57	0.28	0.9996
	41	2.4	1429	170	5.02	5.42	0.18	0.9997
	42	2.4	570	116	7.25	7.82	0.13	0.9996
	43	2.4	236	80	11.18	12.03	0.08	0.9998

Table S2. Parameters Obtained by Fitting the Avrami Theory to 12 kg/mol samples (e.g., the Data Shown in Figure 9b).

Sample	T _c (°C)	n	<i>K</i> x10 ⁵	$K^{1/n} x 10^3$	τ1/2 +	τ1/20	1/7 50%	R^2
~~ F	-1(-)		(min ⁻ⁿ)	(min ⁻¹)	(min)	(min)	(min ⁻¹)	
	39	2.8	31986	666	1.32	1.35	0.74	1.0000
	40	3.0	14227	522	1.69	1.73	0.58	1.0000
	41	3.2	5862	412	2.19	2.25	0.44	1.0000
	42	3.2	2652	322	2.81	2.87	0.35	1.0000
C–PCL 12k	43	3.3	807	232	3.79	3.88	0.26	1.0000
	44	3.2	384	176	4.98	5.07	0.20	1.0000
	45	3.3	131	134	6.84	6.97	0.14	1.0000
	46	3.3	43	95	9.69	9.87	0.10	1.0000
	47	3.3	11	63	14.13	14.32	0.07	1.0000
	48	3.7	0.7	40	21.92	22.60	0.04	1.0000
	49	3.5	0.3	26	32.86	33.32	0.03	1.0000
	36	2.3	56892	783	1.09	1.05	0.95	0.9998
	37	2.3	30308	595	1.44	1.37	0.73	0.9998
	38	2.3	15475	444	1.91	1.83	0.55	0.9999
C/L 95/5 12k	39	2.3	8868	349	2.45	2.35	0.43	0.9999
	40	2.5	3448	260	3.33	3.27	0.31	1.0000
	41	2.5	1563	189	4.48	4.42	0.23	1.0000
	42	2.5	898	152	5.85	5.78	0.17	1.0000
	43	2.4	548	114	7.82	7.67	0.13	1.0000
	44	2.6	139	80	11.29	11.28	0.09	1.0000
	45	2.7	37	54	16.52	16.58	0.06	0.9999
	38	2.6	22017	559	1.57	1.53	0.65	1.0000
	39	2.5	13825	453	1.92	1.88	0.53	0.9999
	40	2.7	5467	341	2.56	2.55	0.39	1.0000
C/L 90/10 12k	41	2.8	2216	257	3.36	3.37	0.30	1.0000
	42	3.0	754	196	4.54	4.57	0.22	1.0000
	43	3.2	201	144	6.27	6.35	0.16	1.0000
	44	3.2	67	102	8.67	8.77	0.11	1.0000
	45	3.3	15	69	12.48	12.65	0.08	1.0000
	46	2.4	12	23	13.68	13.48	0.07	0.9998
	38	2.6	81841	926	0.94	0.95	1.05	1.0000
	39	3.0	32872	690	1.28	1.32	0.76	1.0000
	40	3.1	13406	523	1.69	1.75	0.57	1.0000
C/L 80/20 12k	41	3.4	4342	397	2.27	2.33	0.43	1.0000
	42	3.4	1598	296	3.00	3.07	0.33	1.0000
	43	3.3	704	223	3.98	4.05	0.25	1.0000
	44	3.5	166	161	5.60	5.70	0.18	1.0000
	45	3.8	25	113	8.10	8.30	0.12	1.0000
	37	2.3	15450	444	1.90	1.87	0.54	0.9999

	38	2.4	6806	326	2.61	2.58	0.39	0.9999
	39	2.4	3289	241	3.52	3.50	0.29	1.0000
L - PCL 12k	40	2.3	2052	185	4.54	4.50	0.22	1.0000
	41	2.5	735	140	6.19	6.20	0.16	1.0000
	42	2.4	411	101	8.25	8.30	0.12	1.0000
	43	2.4	221	78	11.03	11.13	0.09	1.0000
	44	2.3	128	55	15.38	15.43	0.07	1.0000

Lauritzen and Hoffman Fit

This Origin[®] plugin can be used not only to perform Avrami Fits but also to perform the Lauritzen–Hoffman Crystallization Fits. The parameters obtained from the LH theory are shown in Table S3.

Table S3. Parameters Obtained from Fitting the Lauritzen and Hoffman Theory to the Data ofFigure 7.

Sample	K_{g}^{τ} (K ²)	σ_e (erg/cm ²)	R ²
C–PCL 3k	236319	254	0.99681
C/L 3k 95/5	329576	346	0.99711
C/L 3k 90/10	307817	315	0.99882
C/L 3k 80/20	297044	287	0.98808
L–PCL 3k	247079	274	0.99904
C–PCL 12k	298825	321	0.99904
C/L 12k 95/5	334344	351	0.99935
C/L 12k 90/10	307017	314	0.99434
C/L 12k 80/20	317940	310	0.99829
L–PCL 12k	186314	207	0.99439

The SSA experiments were performed with a fractionation windows of 3 °C in 3 kg/mol sample.

Figure S1. Final heating scan run after SSA thermal fractionation for C and L-PCLs and their C/L blends of 3kg/mol. The fractionation window was 3 °C. Red and blue curves represent C-PCL and L-PCL, respectively, whereas green curves represent the C/L blends.