Supplementary information

Tertiary butyl hydroquinone as a novel additive for SEI film

formation in lithium-ion batteries

Jia-Qi liu,^{a,†} Quan-Chao Zhuang,^{a,†} Yue-Li Shi,^{ab,*} Xiaodong Yan,^b Xing Zhao,^a Xiaobo Chen ^{b,*}

^{a.} Lithium-ion Batteries Laboratory, School of Materials Science and Engineering, China University of Mining and technology, Xuzhou 221116, China. Yueli Shi, Tel: +8613852081106, E-mail: 3214340798@qq.com.

^{b.} Department of Chemistry, University of Missouri – Kansas City (UMKC) Kansas City, MO 64110, USA. Xiaobo Chen, Tel: +18162356420, Email: Email: chenxiaobo@umkc.edu.

⁺ These authors contributed equally to this work (co-first authors).

Fig. S1. Nyquist plots of the graphite electrodes at 3.0 V in the first discharge process

in the 1.0 M LiPF₆-EC: DMC: DEC (1:1:1, v/v/v) electrolyte without and with TBHQ.

Fig. S2. Nyquist plots of the graphite electrodes at 0.4V in the first discharge process in the 1.0 M LiPF₆-EC: DMC: DEC (1:1:1, v/v/v) electrolyte without and with TBHQ.

Fig. S3. Comparisons of EIS experimental data recorded at 0.7 V and 0.2V during discharge process with the simulation result obtained from the proposed equivalent circuit in the 1.0 M LiPF₆-EC: DMC: DEC (1:1:1, v/v/v) electrolyte without and with

TBHQ.

Table S1

Equivalent circuit parameters at 0.7 V in the discharge process in the 1.0 M $LiPF_{6}$ -EC:

parameters	Without TBHQ		With TBHQ	
	value	Uncertainty(%)	value	Uncertainty (%)
<i>R</i> _s (Ω)	15.83	0.34459	17.5	0.41333
<i>R</i> _{SEI} (Ω)	8.552	9.9809	3.252	0.13218
Q _{SEI} — n	2.4653×10 ⁻⁴	14.145	4.3702×10 ⁻⁴	13.655
$Q_{\rm SEI} - Y_0$	0.80492	6.3603	0.75998	4.9021
<i>R</i> _{ct} (Ω)	22.4	4.3061	18.3	1.6547
$Q_{dl} - n$	0.013865	5.1693	0.011008	2.6914
$Q_{\rm dl} - Y_0$	0.54074	3.598	0.64036	1.6392
$Q_{\rm D}$ – n	0.18343	1.8816	0.57154	3.2999
$Q_{\rm D} - Y_0$	0.76753	1.4483	0.64975	1.7027

DMC: DEC (1:1:1, v/v/v) electrolyte without and with TBHQ.

Table S2

Equivalent circuit parameters at 0.2 V in the discharge process in the 1.0 M $LiPF_{6}$ -EC:

DMC: DEC (1:1:1, v/v/v) electrolyte without and with TBHQ

parameters	Without TBHQ		With TBHQ	
	value	Uncertainty (%)	value	Uncertainty (%)
<i>R</i> _s (Ω)	17.11	0.27663	18.24	0.17332
$R_{\text{SEI}}(\Omega)$	4.445	12.759	2.216	10.917
Q _{SEI} — n	5.8335×10 ⁻²	14.842	1.8474×10 ⁻²	14.39
$Q_{\rm SEI} - Y_0$	0.49221	13.137	0.5639	13.92
<i>R</i> _{ct} (Ω)	4.29	13.017	3.472	10.724
$Q_{dl} - n$	3.1874×10 ⁻⁴	14.833	8.4384×10 ⁻⁵	14.194
$Q_{\rm dl} - Y_0$	0.75824	5.9823	0.92734	7.0895
<i>Q</i> _D – n	1.576	12.438	1.474	11.13
$Q_{\rm D} - Y_0$	0.62624	6.98686	0.4452	6.427

Fig. S4. Variations of Q_{SEI} -n with the electrode potential in electrolytes without and with TBHQ.

Fig. S5. Variations of Q_{SEI} -Y with the electrode potential in electrolytes without and with TBHQ.

Fig. S6. Variations of Q_{dl} -n with the electrode potential in electrolytes without and with TBHQ.

Fig. S7. Variations of Q_{dl} -Y with the electrode potential in electrolytes without and with TBHQ.

Fig. S8. Variations of Q_D -n with the electrode potential in electrolytes without and with TBHQ.

Fig. S9. Variations of Q_D -Y with the electrode potential in electrolytes without and with TBHQ.