Supporting Information

Channel-Wall Functionalization in Covalent Organic Frameworks for the Enhancement of CO₂ Uptake and CO₂/N₂ Selectivity

Shang Zhao,^{‡a,b} Bin Dong,^{‡b} Rile Ge,^b Chang Wang,^b Xuedan Song,^c Wei Ma,^a Yu Wang,^b Ce Hao,^c Xinwen Guo,^c and Yanan Gao*^b

^aDepartment of Chemistry, Dalian University of Technology, Dalian 116024, China

^bDalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

^cState Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China

\$\$. Zhao and B. Dong contributed equally to this work.

*E-mail: ygao@dicp.ac.cn

Table S1 Elemental analysis results.	2
Fig. S1,S2 ¹ H NMR spectra of digested COFs.	3
Table S2,S3 Results of proton integration of digested COFs.	5
Fig. S3 Simulated PXRD patterns of [HO] _{50%} -TAPH-COF.	7
Fig. S4 TGA curves.	8
Fig. S5 PXRD patterns of COFs upon treatment.	9
Fig. S6 Ar adsorption isotherm curves and pore volumes.	10
Fig. S7 Pore size distribution curves from the Ar adsorption data at 87 K.	11
Fig. S8 BET surface area plots from the Ar adsorption data at 87 K.	12
Table S4 Porosity calculated from the N_2 (77 K) and Ar (87 K) adsorptions.	13
Fig. S9–11 CO_2 adsorption isotherms and the virial equation fits.	14
Fig. S12 N_2 adsorption isotherms measured up to 1 bar at 273 and 298 K.	17
Table S5 CO ₂ and N ₂ uptakes, Q_{st} for CO ₂ , and CO ₂ /N ₂ selectivity.	18
Table S6 Summary of CO ₂ uptake, Q_{st} for CO ₂ , and CO ₂ /N ₂ selectivity.	19

TAPH-COFs		С %	Н%	N %
	Calcd	81.32	4.32	12.63
[[[]]]25%	Found	78.50	4.29	12.28
[HO] _{50%}	Calcd	79.81	4.24	12.41
	Found	76.92	4.14	11.93
[HO] _{75%}	Calcd	78.42	4.17	12.19
	Found	72.26	4.13	11.22
[HO] _{100%}	Calcd	77.07	4.10	11.98
	Found	72.20	4.03	11.33

Table S1 Elemental analysis results of [HO]_{X%}-TAPH-COFs.

Fig. S1 ¹H NMR spectra of digested $[N=N]_{X\%}$ -TAPH-COFs (X = 25, 50, 75, 100) in DMSO-d6 and DCl (6 M).

Fig. S2 ¹H NMR spectra of digested $[C=C]_{X\%}$ -TAPH-COFs (X = 25, 50, 75, 100) in DMSO-d6 and DCl (6 M).

	Fragment	DHTA	PA	PhAzo	
	in solution	10.30 ppm	10.16 ppm	7.69 ppm	
TAPH-COFs	Structures			$HO \rightarrow O$ $HO \rightarrow H_{c} \rightarrow H_{c}$	
	Proton integration	2.00	6.10	6.08	
[N=N] _{25%}	Content of the azobenzene group	= 6.08/3(2.00+6.10) = 24.9%			
[N=N] _{50%}	Proton integration	4.00	3.82	12.18	
	Content of the azobenzene group	= 12.18/3(4.00+3.82) = 51.9%			
	Proton integration	6.00	2.58	17.76	
[N=N] _{75%}	Content of the azobenzene group	=17.76/3(6.00+2.58) = 69.0%			
[N=N] _{100%}	Proton integration	8.00	0	23.08	
	Content of the azobenzene group	= 23.08/3(8.00+0) = 96.2 %			

Table S2 Results of proton integration of digested $[N=N]_{X\%}$ -TAPH-COFs.

The content of the azobenzene group was calculated with the formula of $H_c/3(H_a+H_b)$. The calculated data were 24.9%, 51.9%, 69.0%, and 96.2%, which corresponded to the *X* values in [N=N]_{25%}-TAPH-COF, [N=N]_{50%}-TAPH-COF, [N=N]_{75%}-TAPH-COF, and [N=N]_{100%}-TAPH-COF, respectively.

	Fragment in	DHTA	PA	PhSti	
	solution	10.30 ppm	10.16 ppm	7.90 ppm	
TAPH-COFs	Structures				
	Proton integration	2.00	6.06	3.90	
[C=C] _{25%}	Content of the stilbene group	= 3.90/2(2.00+6.06) = 24.2%			
	Proton integration	4.00	4.10	7.90	
[C=C] _{50%}	Content of the stilbene group	= 7.90/2(4.00+4.10) = 48.8%			
	Proton integration	6.00	1.96	11.76	
[C=C] _{75%}	Content of the stilbene group	= 11.76/2(6.00+1.96) = 73.9%			
[C=C] _{100%}	Proton integration	8.00	0	15.84	
	Content of the stilbene group	= 15.84/2(8.00+0) = 99.0%			

Table S3 Results of proton integration of digested $[C=C]_{X\%}$ -TAPH-COFs.

The content of the stilbene group was calculated with the formula of $H_c/2(H_a+H_b)$. The calculated data were 24.2%, 48.8%, 73.9%, and 99.0%, which corresponded to the *X* values in [C=C]_{25%}-TAPH-COF, [C=C]_{50%}-TAPH-COF, [C=C]_{75%}-TAPH-COF, and [C=C]_{100%}-TAPH-COF, respectively.

Fig. S3 PXRD patterns of [HO]_{50%}-TAPH-COF: experimental (black), refined (red), the difference (blue, experimental minus refined profiles), and simulated patterns using eclipsed AA stacking mode (magenta). The unit cell was created with a *P2* space group of *a* = 35.3017 Å, *b* = 37.7221 Å, *c* = 3.8908 Å, and $\alpha = \beta = \gamma = 90^{\circ.S1}$ The use of lattice modeling and Pawley refinement processes led to an eclipsed AA stacking model that could reproduce the PXRD results in the peak position and intensity with *R*_{wp} of 4.9% and *R*_p of 3.9%.

Fig. S4 TGA curves of (A) $[N=N]_{X\%}$ -TAPH-COFs and (B) $[C=C]_{X\%}$ -TAPH-COFs (X = 25: black, X = 50: blue, X = 75: olive, X = 100: red).

Fig. S5 PXRD patterns of (A) $[N=N]_{X\%}$ -TAPH-COFs and (B) $[C=C]_{X\%}$ -TAPH-COFs upon one-day treatment in 1 M HCl and 1 M NaOH at room temperature.

Fig. S6 Ar adsorption isotherm curves and pore volumes of (A) $[N=N]_{X\%}$ -TAPH-COFs and (B) $[C=C]_{X\%}$ -TAPH-COFs (X = 25: black, X = 50: blue, X = 75: olive, X = 100: red).

Fig. S7 Pore size distribution curves of (A) $[N=N]_{X\%}$ -TAPH-COFs and (B) $[C=C]_{X\%}$ -TAPH-COFs (X = 25, 50, 75, 100) by fitting NLDFT to the Ar adsorption data at 87 K. With the content of the functional groups increasing from 25% to 50%, 75%, and 100%, the pore size of $[N=N]_{X\%}$ -TAPH-COFs decreased from 1.8 to 1.4, 1.2, and 1.0 nm, while the pore size of $[C=C]_{X\%}$ -TAPH-COFs decreased from 1.6 to 1.3, 1.1, and 1.0 nm, respectively.

Fig. S8 BET surface area plots for $[N=N]_{X\%}$ -TAPH-COFs and $[C=C]_{X\%}$ -TAPH-COFs (X = 25, 50, 75, 100) calculated from the Ar adsorption isotherm at 87 K.

	N ₂ adsorption at 77 K			Ar adsorption at 87 K		
TAPH-	Sam	Pore	Pore	Sam	Pore	Pore
COFs	(m^2/σ)	volume	size	(m^2/g)	volume	size
	(11178)	(cm ³ /g)	(nm)	(11178)	(cm ³ /g)	(nm)
[N=N] _{25%}	702	0.72	1.7	610	0.73	1.8
[N=N] _{50%}	560	0.64	1.4	480	0.71	1.4
[N=N] _{75%}	320	0.59	1.3	350	0.65	1.2
[N=N]100%	250	0.54	1.2	170	0.59	1.0
[C=C] _{25%}	680	0.70	1.7	600	0.72	1.6
[C=C] _{50%}	460	0.66	1.6	496	0.67	1.3
[C=C] _{75%}	390	0.55	1.3	361	0.64	1.1
[C=C] _{100%}	310	0.51	1.2	271	0.50	1.0

Table S4 Surface area, pore volume, and pore size of $[N=N]_{X_{0}^{n}}$ -TAPH-COFs and $[C=C]_{X_{0}^{n}}$ -TAPH-COFs calculated from the N₂ (77 K) and Ar (87 K) adsorptions.

Fig. S9 The CO₂ adsorption isotherms (symbol) and the virial equation fits (line) for $[HO]_{X\%}$ -TAPH-COFs (X = 25, 50, 75, 100) at 273 and 298 K, respectively.

Fig. S10 The CO₂ adsorption isotherms (symbol) and the virial equation fits (line) for $[C=C]_{X\%}$ -TAPH-COFs (X = 25, 50, 75, 100) at 273 and 298 K, respectively.

Fig. S11 The CO₂ adsorption isotherms (symbol) and the virial equation fits (line) for $[N=N]_{X\%}$ -TAPH-COFs (X = 25, 50, 75, 100) at 273 and 298 K.

Fig. S12 N₂ adsorption isotherms measured at pressure of up to 1 bar at 273 K (left) and 298 K (right) of (A) $[HO]_{X\%}$ -TAPH-COFs, (B) $[N=N]_{X\%}$ -TAPH-COFs, and (C) $[C=C]_{X\%}$ -TAPH-COFs with different contents of functional groups (X = 25: black, X = 50: blue, X = 75: olive, X = 100: red).

Table S5 CO₂ uptake (at 1 bar), N₂ uptake (at 1 bar), Q_{st} for CO₂, and CO₂/N₂ selectivity of [HO]_{X%}-TAPH-COFs, [N=N]_{X%}-TAPH-COFs, and [C=C]_{X%}-TAPH-COFs.

TAPH_COF®	CO ₂ uptake ^a	N ₂ uptake ^a	Q _{st} for CO ₂ (kJ/mol)	Selectivity ^b
TAI II-COFS	(mg/g)	(mg/g)		15/85 CO ₂ /N ₂
[HO] _{25%}	58 (32)	5.8 (3.5)	30.9	15 (9)
[HO] _{50%}	56 (37)	5.6 (3.2)	28.2	13 (11)
[HO] _{75%}	61 (38)	5.7 (3.2)	28.3	14 (12)
[HO] _{100%}	62 (38)	6.3 (3.7)	31.1	16 (15)
[N=N] _{25%}	207 (115)	3.2 (1.6)	43.4	78 (111)
[N=N] _{50%}	112 (67)	2.8 (1.4)	36.0	49 (59)
[N=N] _{75%}	77 (44)	2.0 (1.1)	31.0	48 (53)
[N=N] _{100%}	60 (39)	1.7 (0.9)	30.7	57 (74)
[C=C] _{25%}	61 (40)	5.2 (2.8)	30.3	18 (16)
[C=C] _{50%}	63 (41)	5.5 (3.0)	29.0	16 (14)
[C=C] _{75%}	55 (34)	4.3 (2.4)	28.7	22 (16)
[C=C] _{100%}	51 (34)	3.5 (2.2)	28.5	27 (22)

^aMeasured under 273 and 298 K (in parenthesis). ^bCalculated under 273 and 298 K (in parenthesis) using the IAST method.

Table S6 Summary of CO₂ uptake (at 1 bar), Q_{st} for CO₂, and CO₂/N₂ selectivity of the reported COFs.

COFa	CO ₂ uptake ^a	Selectivity	$Q_{\rm st}$ for CO ₂	
COFS	(mg/g)	15/85 CO ₂ /N ₂	(kJ/mol)	
COF-5 ⁸²	59	—	—	
COF-103 ^{S2}	76	_	—	
TDCOF-5 ⁸³	92	—	21.8	
ILCOF-1 ^{S4}	60(32)	—	18.3	
TH-COF-1 ^{S5}	128	$(19^{b}/31^{b})$	31	
COF-JLU2 ^{S6}	217	77°	31	
ATFG-COF ^{S7}	172	(65 h/151c)	22.2	
(COF-JLU2)	175	$(03^{\circ}/131^{\circ})$	33.3	
AB-COF (ACOF-1) ^{S7}	149	(88 ^b /102 ^c)	29.7	
ACOF-1 ^{S8}	177	40 ^c	27.6	
TpPa-COF (MW) ^{S9}	218	32°	34.1	
TAPB-TFPB ^{S10}	40	—	_	
iPrTAPB-TFPB ^{S10}	31	—	_	
TAPB-TFP ^{S10}	180	—	_	
iPrTAPB-TFP ^{S10}	105	_	_	
TAT-COF-2 ^{S11}	77	5.9 ^b	_	
[HO] _{100%} -H ₂ P-COF ^{S12}	63	(8 ^b)	36.4	
$[HO_2C]_{100\%}$ -H ₂ P-COF ^{S12}	174	(77 ^b)	43.5	
[AcOH] ₅₀ -H ₂ P-COF ^{S13}	117	—	17.8	
[EtOH] ₅₀ -H ₂ P-COF ^{S13}	124	_	19.7	
[EtNH ₂] ₅₀ -H ₂ P-COF ^{S13}	157	_	20.9	
N-COF ^{S14}	120 (64) ^d	_	—	

^aMeasured under 273 and 298 K (in parenthesis). ^bCalculated under 273 and 298 K (in parenthesis) using the IAST method. ^cCalculated under 273 and 298 K (in parenthesis) using the Henry method. ^dAt 1 atm.

Reference

- (S1) X. Chen, J. Gao, D. Jiang, *Chem. Lett.*, **2015**, *44*, 1257–1259.
- (S2) H. Furukawa, O. M. Yaghi, J. Am. Chem. Soc., 2009, 131, 8875-8883.

- (S3) Z. Kahveci, T. Islamoglu, G. A. Shar, R. Ding, H. M. El-Kaderi, *CrystEngComm*, 2013, 15, 1524–1527.
- (S4) M. G. Rabbani, A. K. Sekizkardes, Z. Kahveci, T. E. Reich, R. Ding, H. M. El-Kaderi, *Chem. Eur. J.*, **2013**, *19*, 3324–3328.
- (S5) L. Wang, B. Dong, R. Ge, F. Jiang, J. Xiong, Y. Gao, J. Xu, *Micropor. Mesopor. Mat.*, 2016, 224, 95–99.
- (S6) Z. Li, Y. Zhi, X. Feng, X. Ding, Y. Zou, X. Liu, Y. Mu, Chem. Eur. J., 2015, 21, 12079–12084.
- (S7) L. Stegbauer, M. W. Hahn, A. Jentys, G. Savasci, C. Ochsenfeld, J. A. Lercher,
 B. V. Lotsch, *Chem. Mater.*, 2015, 27, 7874–7881.
- (S8) Z. Li, X. Feng, Y. Zou, Y. Zhang, H. Xia, X. Liu, Y. Mu, Chem. Commun., 2014, 50, 13825–13828.
- (S9) H. Wei, S. Chai, N. Hu, Z. Yang, L. Wei, L. Wang, *Chem. Commun.*, 2015, 51, 12178–12181.
- (S10) D. Kaleeswaran, P. Vishnoi, R. Murugavel, J. Mater. Chem. C, 2015, 3, 7159–7171.
- (S11) Y.-F. Xie, S.-Y. Ding, J.-M. Liu, W. Wang, Q.-Y. Zheng, J. Mater. Chem. C, 2015, 3, 10066–10069.
- (S12) N. Huang, X. Chen, R. Krishna, D. Jiang, Angew. Chem. Int. Ed., 2015, 54, 2986–2990.
- (S13) N. Huang, R. Krishna, D. Jiang, J. Am. Chem. Soc., 2015, 137, 7079–7082.
- (S14) Q. Gao, L. Bai, X. Zhang, P. Wang, P. Li, Y. Zeng, R. Zou, Y. Zhao, Chin. J. Chem., 2015, 33, 90–94.