Supporting Information

Enhancing the Performance of Transparent Conductive Oxide-less Back Contact Dye-sensitized Solar Cells by Facile Diffusion of Cobalt Species through TiO₂ Nanopores

Md. Zaman Molla*, Minobu Kawano, Ajay K. Baranwal, Shyam S. Pandey, Yuhei Ogomi, Tingli Ma and Shuzi Hayase*

Figure S1: Schematic representation of (a) possible electrostatic interaction between the negatively charged bare TiO_2 surface and the oxidized Co^{3+} species, and (b) suppression of the electrostatic interaction by staining the TiO_2 surface by YD2-o-C8 dye.

Figure S2: The cyclic voltammogram for 2.2 mM Co(bpy)₃(PF6)₂ and 0.1 M TBAPF₆ in acetonitrile solution emloying different scan rates of 10 mV/s, 20 mV/s, 40 mV/s, 60 mV/s, and 80 mV/s.

Figure S3: Relationship between photoconversion efficiency and thickness of nanoporous TiO_2 film stained with the YD2-o-C8 dye coated onto the Pt counter electrode.

Figure S4: Niquist plots for TCO-less BC-DSSCs with YD2-o-C8, and D131 stained nanoporous TiO_2 layer coated onto the Pt counter electrode used as an electrolyte absorber.

Figure S5. Cathodic peak current, i_p versus square root of scan rate, $v^{1/2}$ graph in bulk acetonitrile and through YD2-o-C8 stained TN spacer, bare TN spacer, and D131 stained TN spacer measured at different scan rates of 10 mV/s, 20 mV/s, 40 mV/s, 60 mV/s, and 80 mV/s, respectively.

The diffusion coefficient was calculated using the Randles-Sevcik equation at 25°C

$$i_{\rm p} = 2.68 \times 10^5 \ n^{3/2} \ AD^{1/2} Cv^{1/2}$$

where i_p is the cathodic peak current, *n* the number of electrons transferred in the redox event, *A* the electrode area, *D* the diffusion coefficient, *C* the concentration of the redox specie and *v* the scan rate.

Table S1 Diffusion coefficient of [Co(bpy)]³⁺ specie in bulk acetonitrile and through YD2-o-C8 stained TN spacer, bare TN spacer and D131 stained TN spacer.

Diffusion medium	Diffusion Coefficient
Bulk acetonitrile	9.13×10 ⁻⁶ cm ² s ⁻¹
YD2-o-C8 stained TiO ₂	5.11×10 ⁻⁶ cm ² s ⁻¹
Bare TiO ₂	4.24×10 ⁻⁶ cm ² s ⁻¹
D131 stained TiO ₂	3.24×10 ⁻⁶ cm ² s ⁻¹