Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Layered SnS₂ Cross-linked by Carbon Nanotubes as High Performance

Anode for Sodium Ion Batteries

Haomiao Li[†], Min Zhou[†], Wei Li, Kangli Wang^{*}, Shijie Cheng, Kai Jiang^{*}

State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, and State Key Laboratory of Materials Processing and Die & Mould Technology, College of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan, Hubei, China 430074.

[†] These authors contributed equally to this work.

*Corresponding Author: Kai Jiang; Kangli Wang

Tel: 027-87559524; E-mail: kjiang@hust.edu.cn; klwang@hust.edu.cn

Figure S1, XRD patterns of as-prepared products with different ratios between sulfur and DBTA: 2:1, 3:1, 4:1, 5:1, 6:1 and JCPDS Card no. 40-14671.

Figure S2, Nitrogen adsorption and desorption isotherms. Based on the results, the Brunauer-Emmett-Teller (BET) surface of $SnS_2@CNT$ and SnS_2 was calculated to be 17.03 and 4.45 m² g⁻¹, respectively.

Figure S3 Comparison of SEM images between bare SnS2 and SnS2@CNT nanocomposites.

Figure S4, SEM images of all as-prepared $SnS_2@CNT$ products with different ratios of S and DBTA (S/DBTA a 2:1, b 3:1, c 4:1, d 5:1 and e 6:1.)

Figure S5, The charge-discharge profiles of SnS₂, SnS₂@CNT and CNT electrode of the second cycle Current density: 100 mA cm⁻²

Figure S6, Cycling performances of the as-synthesized samples (various ratios of S and DBTA) at 400 mA g⁻¹ at 1 A g⁻¹.

The electrochemical performances of the as-prepared $SnS_2@CNT$ composites with different sulfur content (S : DBTA = 2:1, 3:1, 4:1, 5:1 and 6:1) were investigated. The reversible capacities increased with the increasing of sulfur content due to the transformation of the products from SnS to SnS₂. However, the variation tendency of cycling performance exists a transition at the point of 5:1 where exhibits an optimal cycling performance.

Anode	Capacity / Current density	Cycle number / capacity retention	Reference
SnS ₂ /rGO	610 mA h g ⁻¹ / 50 mA g ⁻¹ 320 mA h g ⁻¹ / 2 A g ⁻¹	150 / -	[1]
SnS_2 / graphene	650 mA h g ⁻¹ / 200 mA g ⁻¹ 326 mA h g ⁻¹ / 4A g ⁻¹	300 / 93.8%	[2]
SnS_2 / C	660 mA h g ⁻¹ / 50 mA g ⁻¹ 360 mA h g ⁻¹ / 1A g ⁻¹	100 / 86.4%	[3]
SnS_2 / rGO	649 mA h g ⁻¹ / 100 mA g ⁻¹ 337 mA h g ⁻¹ / 12.8A g ⁻¹	400 / 89%	[4]
SnS ₂ -RGO	630 mA h g ⁻¹ / 200 mA g ⁻¹ 544 mA h g ⁻¹ / 2A g ⁻¹	400 / 84%	[5]

Table S1 comparison of the results in this study with those of previously reported in the literature.

SnS / rGO	1037 mA h g ⁻¹ / 30 mA g ⁻¹ 308(250 th) mA h g ⁻¹ / 7.29A g ⁻¹	50 / 91%	[6]
Sn_3P_4	718 mA h g ⁻¹ / 100 mA g ⁻¹	100 / 90%	[7]
SnO ₂ / rGO	406 mA h g ⁻¹ / 100 mA g ⁻¹ 125 mA h g ⁻¹ / 1A g ⁻¹	150 / 81%	[8]
CNT / SnO ₂ / C	420mA h g ⁻¹ / 50 mA g ⁻¹ 176 mA h g ⁻¹ / 1A g ⁻¹	60 / 76%	[9]
SnO	570 mA h g ⁻¹ / 50 mA g ⁻¹ 150 mA h g ⁻¹ / 1A g ⁻¹	50 / 44%	[10]

Figure S7, EDS result of SnS₂@CNT electrode after 50 cycles and corresponding SEM image.

Figure S8. Cycling performance of the SnS₂@CNT electrode, first ten cycles at 100 mA g^{-1} and 2 A g^{-1} for the next 100 cycles.

P. V. Prikhodchenko, Y. W. Denis, S. K. Batabyal, V. Uvarov, J. Gun, S. Sladkevich, A. A. Mikhaylov, A. G. Medvedev, O. Lev, *J. Mater. Chem. A*, 2014, 2, 8431-8437.
Y. Liu, H. Kang, L. Jiao, C. Chen, K. Cao, Y. Wang, H. Yuan, *Nanoscale*, 2015, 7, 1325-1332.

[3] J. Wang, C. Luo, J. Mao, Y. Zhu, X. Fan, T. Gao, A. C. Mignerey, C. Wang, *ACS Appl. Mater*. *Interfaces*, 2015, 7, 11476–11481.

[4] Y. Zhang, P. Zhu, L. Huang, J. Xie, S. Zhang, G. Cao, X. Zhao, *Adv. Funct. Mater.*, 2015, 25, 481-489.

[5] B. Qu, C. Ma, G. Ji, C. Xu, J. Xu, Y. S. Meng, T. Wang, J. Y. Lee, *Adv. Mater.*, 2014, 26, 3854-3859.

[6] T. Zhou, W. K. Pang, C. Zhang, J. Yang, Z. Chen, H. K. Liu, Z. Guo, *ACS Nano*, 2014, 8, 8323-8333.

[7] Y. Y. Kim, Y. Y. Kim, A. Choi, S. Woo, D. Mok, N. S. Choi, Y. S. Jung, J. H. Ryu, S. M.; Oh, K. T. Lee, *Adv. Mater.* 2014, 26, 4139-4144.

[8] Y. X. Wang, Y. G. Lim, M. S. Park, S. L. Chou, J. H. Kim, H. K. Liu, S. X. Dou, Y. J. Kim, J. *Mater. Chem. A*, 2014, 2, 529-534.

[9] Y. Zhao, C. Wei, S. Sun, L. P. Wang, Z. J. Xu, Adv. Sci., 2015, 2, doi:

10.1002/advs.201500097

[10] M. Shimizu, H. Usui, H. Sakaguchi, J. Power Sources, 2014, 248, 378-382.