Supporting Information

Synthesis and biological evaluation of novel analogues of batracylin with synthetic amino acids and adenosine: an unexpected effect on centromere segregation in tumor cells through a dual inhibition of topoisomerase Πα and Aurora B

Wioleta Januchta,^a Marcin Serocki,^b Krystyna Dzierzbicka,^{*a} Grzegorz Cholewinski,^a Monika Gensicka^a and Andrzej Skladanowski^b

^aDepartment of Organic Chemistry, Chemical Faculty, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdansk, Poland. E-mail: krydzier@pg.gda.pl ^bDepartment of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicza St, 80-233 Gdansk, Poland

Experimental part

Chemistry

Determination of the structure of selected analogues **3d** and **3h** by ¹H NMR (500 MHz) and ¹³C NMR. Assigned carbon atom numbering sequence in the structures obtained analogues (Fig. 1 and 2) for which a description is given of ¹H NMR and ¹³C NMR spectra.

Fig. 1 The structure of C⁸-substituted batracylin derivatives, 6a-h.

Fig. 2 The structure of analogues **3a–h**.

Table 3	Samp	oles concentra	ation.
---------	------	----------------	--------

a 1	a i
Compound	Concentration
no	[mg mL ⁻¹]
3 a	8
3b	8
3c	10
3d	17
3 e	21
3f	20
3g	21
3h	21
6a	21
6d	21
6f	18
6g	21
6h	17

Proto	on no	ROE contacts		
		3d	3h	
		adenosine moiety	_	
1	,	8, 2', 3', 4'	8, 2', 3', 4'	
2	,	8, 1', 3', 4', 5a', 5b'	8, 1', 3', 4', 5a', 5b',	
			2'OH*	
3	,	8, 1', 2', 4', 5a', 5b'	8, 1', 2', 4', 5a', 5b'	
4	.'	1', 2', 3', 5a', 5b'	1', 2', 3', 5a', 5b'	
58	a'	1', 2', 3', 4', 5b'	1', 2', 3', 4', 5b'	
51	0'	1', 2', 3', 4', 5a'	1', 2', 3', 4', 5a'	
2'0	ЭH		2'*	
3'(OH			
5'(OH	5a', 5b'	5a', 5b'	
2	2			
8	3	1', 2', 3'	1', 2', 3'	
10-1	NH	11*, 12, 13	11*, 12, 13	
		linker		
3d	3h			
11	11	12, 13, 10-NH*	12, 13, 10-NH*	
12/13	12/20	11, 14	11, 21, 10-NH	
14	13-19	13, 8"-CONH	11, 12, 21, 10-NH	
	21		19, 20, 8"-CONH	
		batracylin		
1	"	2"*	2"*	
2	"	1"*, 3"*	1"*, 3"*	
3	"	4"*, 2"*	4"*, 2"*	
4"		3"*	3"*	
6	"	7"*	7"*	
7"		6"*, 8"-CONH	6"*, 8"-CONH	
9	"	6", 10", 8"-CONH	6", 10", 8"-CONH	
1()"	7", 9"	7", 9"	
8"-C	ONH	21, 7", 9"	21, 7", 9"	
*HHT – Hartmann Hahn Transfer				

Table 4 ROE contacts for compound **3d** and **3h** in DMSO- d_6 at 298 K.

Table 5 ¹³C NMR (500 MHz) chemical shifts for compound **3d** in DMSO- d_6 at 298 K.

^{13}C atom no.	¹³ C δ (ppm)	^{13}C atom no.	¹³ C δ (ppm)
adenosin	adenosine moiety		cylin
C-1'	88.64	C-1"	122.49
C-2'	74.18	C-2"	133.90
C-3'	71.35	C-3"	132.92
C-4'	86.60	C-4"	123.54
C-5'	62.36	C-4a"	134.79
C-2	153.07	C-4b"	148.10
C-4	148.93	C-5a"	139.37

C-5	120.43	C-6"	128.59
C-6	155.34	C-7"	119.41
C-8	140.34	C-8"	135.96
linker		C-9"	118.8
C-11	39.70	C-9a"	123.10
C-12	29.40	C-10"	41.10
C-13	23.30	C-12"	166.87
C-14	36.89	C-12a"	130.73
C-15	172.07		

Table 6 ¹H-NMR (500 MHz) chemical shifts for compound **3d** in DMSO- d_6 at 298 K.

Proton no.	$^{1}H\delta$ (ppm)	$J_{H,H}(Hz)$	ROE contacts		
adenosine moiety					
1'	5.86	d (5.0Hz)	8, 2', 3', 4'		
2'	4.59	t (5.0Hz)	8, 1', 3', 4', 5a', 5b'		
3'	4.14	t (5.0Hz)	8, 1', 2', 4', 5a', 5b'		
4'	3.95	dd (5.0Hz, 3.5Hz)	1', 2', 3', 5a', 5b'		
5a'	3.65	dd (12.0Hz, 3.5Hz)	1', 2', 3', 4', 5b'		
5b'	3.55	dd (12.0Hz, 3.5Hz)	1', 2', 3', 4', 5a'		
2'OH	5.51	bs			
3'ОН	5.26	bs			
5'OH	5.43	bs	5a', 5b'		
2	8.19	bs			
8	8.34	bs	1', 2', 3'		
10-NH	7.93	bs	11*, 12, 13		
linker					
11	3.49	bs	12, 13, 10-NH*		
12/13	1.62	т	11, 14		
14	2.37	t (7.0Hz)	13, 8"-CONH		
	batı	racylin			
1"	7.98	d (7.0Hz)	2''*		
2"	7.79	t (7.0Hz)	1"*, 3"*		
3"	7.74	t (7.0Hz)	4"*, 2"*		
4"	7.87	d (7.0Hz)	3"*		
6"	7.33	bd (8.0Hz)	7''*		
7"	7.53	bd (8.0Hz)	6"*, 8"-CONH		
9"	7.57	bs	6", 10", 8"-CONH		
10"	4.89	S	7", 9"		
8"-CONH	10.15	S	21, 7", 9"		
*HHT – Hartmann Hahn Transfer					

^{13}C atom no.	¹³ C δ (ppm)	^{13}C atom no.	¹³ C δ (ppm)	
adenosine moiety		batracylin		
C-1'	88.63	C-1"	122.48	
C-2'	74.17	C-2"	133.89	
C-3'	71.34	C-3"	132.91	
C-4'	86.59	C-4"	123.54	
C-5'	62.36	C-4a"	134.78	
C-2	153.07	C-4b"	148.07	
C-4	148.84	C-5a"	139.42	
C-5	120.39	C-6"	128.58	
C-6	155.31	C-7"	119.38	
C-8	140.30	C-8"	135.91	
link	ker	C-9"	118.04	
C-11	39.67	C-9a"	123.07	
C-12	29.70	C-10"	41.10	
C-13-19	26.0-32.0	C-12"	166.87	
C-20	25.80	C-12a"	130.73	
C-21	37.09			
C-22	172.19			

Table 7 ¹³C NMR (500 MHz) chemical shifts for compound **3h** in DMSO- d_6 at 293 K.

Table 8	¹ H NMR ((500 MHz)) chemical s	shifts for con	mpound 3h in	n DMSO- d_6 at 2	293 K.
---------	----------------------	-----------	--------------	----------------	---------------------	--------------------	--------

Proton no.	$^{1}H\delta$ (ppm)	$J_{H,H}$ (Hz)	ROE contacts		
	adenos	ine moiety			
1'	5.86	d (5.0Hz)	8, 2', 3', 4'		
2'	4.58	t (5.0Hz)	8, 1', 3', 4', 5a', 5b',		
			2'OH*		
3'	4.12	t (5.0Hz)	8, 1', 2', 4', 5a', 5b'		
4'	3.95	dd (5.0Hz, 3.5Hz)	1', 2', 3', 5a', 5b'		
5a'	3.65	dd (12.0Hz, 3.5Hz)	1', 2', 3', 4', 5b'		
5b'	3.55	dd (12.0Hz, 3.5Hz)	1', 2', 3', 4', 5a'		
2'OH	5.56	bs	2'*		
3'ОН	5.31	bs			
5'ОН	5.47	bs	5a', 5b'		
2	8.18	bs			
8	8.33	bs	1', 2', 3'		
10-NH	7.90	bs	11*, 12, 13		
	li	nker			
11	3.49	bs	12, 13, 10-NH*		
12/20	1.56	т	11, 21, 10-NH		
13-19	1.25	т	11, 12, 21, 10-NH		
21	2.30	t (7.0Hz)	19, 20, 8"-CONH		
batracylin					
1"	7.98	d (7.0Hz)	2"*		
2"	7.78	t (7.0Hz)	1"*, 3"*		

3"	7.73	t (7.0Hz)	4"*, 2"*	
4"	7.87	d (7.0Hz)	3"*	
6"	7.33	bd (8.0Hz)	7"*	
7"	7.54	bd (8.0Hz)	6"*, 8"-CONH	
9"	7.58	bs	6", 10", 8"-CONH	
10"	4.89	S	7", 9"	
8"-CONH	10.17	S	21, 7", 9"	
* HHT – Hartmann Hahn Transfer				

Biological assays

Fig. 3 Intracellular localization of BAT and its 2h derivative in living A549 cells.

S

Fig. 4B Protonation profile of compound 2a

Fig. 4C Protonation profile of compound 2d

Fig. 4D Protonation profile of compound 2h

Fig. 5 Nuclear morphology of cells treated with BAT and its amino acid conjugates for the time indicated. Cells were treated with studied compounds, stained with Hoechst 33342 and analyzed by fluorescence microscopy.

Fig. 6 Nuclear morphology of A549 and HL-60 cells treated with BAT and its amino acid conjugates. Cells were treated with studied compounds for 72h, stained with Hoechst 33342 (blue), acridine orange (green) and analyzed by fluorescence microscopy.

Fig. 7 Induction of premature cellular senescence in A549 cells treated with studied compounds for 120h. After treatment cells were fixed and stained for SA- β -Gal activity as described in Materials and Methods and analyzed by light microscopy.

Fig. 8 Intracellular localization of AuroraB in A549 cells treated with studied compounds for 3h. After treatment cells were fixed, stained with Aurora B specific antibodies (green) as described in Materials and Methods and analyzed by fluorescence microscopy. DNA was counterstained with DAPI (blue). Insert: enlarged image of the mid-body structure containing Aurora B.