Supplementary information

Multi-block copolymers with fluorene-containing hydrophilic segments densely functionalized by side-chain quaternary ammonium groups as anion exchange membranes

Liuhong Li,^{ab} Xi Yue,^{ab} Wenjun Wu,^{ab} Wuxin Yan,^{ab} Mingjian Zeng,^{ab} You Zhou,^{ab} Shijun Liao^{ab} and Xiuhua Li^{*ab}

^a School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.

^b The Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, P. R. China.

Corresponding Author

* Tel & Fax: 8620 – 22236591. E-mail: <u>lixiuhua@scut.edu.cn</u>

I. Figures and tables

II. Experimental section

I. Figures and tables

Fig. S1 ¹H NMR spectra of the oligomer-Fs (a) X = 5 and (b) X = 7.

Fig. S2 ¹H NMR spectra of oligomer-OHs (a) Y = 10, (b) Y = 13 and (c) Y = 17.

Fig. S3 ¹H NMR spectra of (a) BrMPAES-X5Y10, (b) BrMPAES-X5Y13, (c) BrMPAES-X5Y17, (d) BrMPAES-X7Y10, (e) BrMPAES-X7Y13 and (f) BrMPAES-X7Y17.

Fig. S4 AFM pattern of QMPAES-X5Y10

 $\label{eq:stable} \textbf{Table S1} \quad \mathsf{IEC}_{\mathsf{m}}, \, \mathsf{IECv}_{\mathsf{wet}}, \, \sigma, \, \sigma/\mathsf{IEC}_{\mathsf{m}}, \, \sigma/\mathsf{IECv}_{\mathsf{wet}} \, of \, the \, \mathsf{QMPAESs} \, membranes \, and \, some \, reported \, \mathsf{AEMs}.$

Fig. S1 1 H NMR spectra of the oligomer-Fs (a) X = 5 and (b) X = 7.

Fig. S2 1 H NMR spectra of oligomer-OHs (a) Y = 10, (b) Y = 13 and (c) Y = 17.

Fig. S3 ¹H NMR spectra of (a) BrMPAES-X5Y10, (b) BrMPAES-X5Y13, (c) BrMPAES-X5Y17, (d) BrMPAES-X7Y10, (e) BrMPAES-X7Y13 and (f) BrMPAES-X7Y17.

200 nm

Fig. S4 AFM pattern of QMPAES-X5Y10

Membrane	IEC _m (meg g ⁻¹)	IECv _{wet} (meg.cm ⁻³)		σ (mS cm ⁻¹)		σ/IEC _m (mS g/(cm mmol))		σ/IECv _{wet}	
	(meq 6 /	30 °C	80 °C	30 °C	, 80 °C	30 °C	80 °C	30 °C	80 °C
QMPAES-X7Y10	1.28	0.52	0.51	27.4	85.0	21.4	66.4	52.7	166.7
QMPAES-X7Y13	1.02	0.70	0.64	27.2	51.9	26.7	50.9	38.9	81.1
QMPAES-X7Y17	0.90	0.72	0.68	11.6	38.7	12.9	43.0	16.1	56.9
QMPAES-X5Y10	1.06	0.78	0.74	21.4	58.0	20.2	54.7	27.4	78.4
QMPAES-X5Y13	0.83	0.56	0.56	16.5	44.1	19.9	53.1	29.5	78.8
QMPAES-X5Y17	0.81	0.64	0.61	9.7	23.0	12.0	28.4	15.2	37.7
QPAES-X8Y8 ¹	1.60	1.12ª	1.05	18.3ª	75.8	11.4ª	47.4	16.3ª	72.2
QPAES-X16Y8 ¹	1.24	0.62ª	0.56	26.1ª	51.5	21.0ª	41.5	42.1ª	92.0
QPAES-X16Y10 ¹	1.15	0.85ª	0.77	11.8ª	37.8	10.3ª	32.9	13.9ª	49.1
	1.45	0.96ª	0.84	15.4ª	54.5	10.6ª	37.6	16.0ª	64.9
QPAES-X20Y18 ¹	1.54	0.98ª	0.87	13.3ª	64.1	8.6ª	41.6	13.6ª	73.7
QPAE-X15Y8 ²	1.13	0.90ª	0.77 ^c	9.8ª	27.6 ^c	8.7ª	24.4 ^c	10.9ª	35.8 ^c
QPAE-X25Y21 ²	1.45	1.07ª	0.86 ^c	16.9ª	37.3 ^c	11.7ª	25.7 ^c	15.8ª	43.4 ^c
QPE-X16Y11 ³	0.79	d	d	d	8.8 ^c	d	11.1 ^c	d	d
	1.13	d	d	d	47.0 ^c	d	41.6 ^c	d	d
	1.38	d	d	d	52.0 ^c	d	37.7 ^c	d	d
QPE-X22Y11 ³	0.86	d	d	d	25.0 ^c	d	29.1 ^c	d	d
ds-PAES-75 ⁴	1.49	1.27 ^b	1.03	21.9 ^b	47.3	14.7 ^b	31.7	17.2 ^b	45.9
4(X35) ⁵	1.01	1.14ª	d	15ª	24.6	14.9ª	24.4	13.2ª	d
4(X50) ⁵	1.32	1.40ª	d	26ª	40.0	19.7ª	30.3	18.6ª	d
ImPES-0.55 ⁶	0.98	1.29	d	21.9	51.7	22.3	52.8	17.0	d
ImPES-0.70 ⁶	1.23	1.48	d	32.6	69.2	26.5	56.3	22.0	d
PAES-Q-12 ⁷	1.65	d	d	22.9ª	54.0	13.9ª	32.7	d	d
QA-PSf-g-PEG350 ⁸	1.36	d	d	24.9ª	70.2	18.3 ª	51.6	d	d
^a Determined at 20 °C. ^b Determined at 25 °C. ^c Determined at 60 °C. ^d Not reported in the literature.									

Table S1IEC σ , σ /IEC σ , σ /IEC σ , σ /IEC σ σ \sigma σ

II. Experimental section

¹H NMR characterization.

¹H NMR spectras were recorded on a Bruker AVANCE 400S with tetramethylsilane (TMS) as the standard and CDCl₃ or DMSO-d₆ as the solvent.

Atomic Force Microscopy (AFM) characterization.

Tapping mode Atomic Force Microscopy (AFM) was performanced on a Bruker Multimode 8 scanning probe microscopy with a probe of MPP-11100-10 (40 N/m, 300 kHz). The scanning frequency is 1 Hz. The sample was equilibrated at 60% RH for more than 24 h before test.

References

- 1 X. Li, Q. Liu, Y. Yu and Y. Meng, J. Membr. Sci., 2014, 467, 1-12.
- 2 X. Li, Y. Yu, Q. Liu and Y. Meng, J. Membr. Sci., 2013, 436, 202-212.
- 3 M. Tanaka, K. Fukasawa, E. Nishino, S. Yamaguchi, K. Yamada, H. Tanaka, B. Bae, K. Miyatake and M. Watanabe, J. Am. Chem. Soc., 2011, **133**, 10646-10654.
- 4 X. Li, G. Nie, J. Tao, W. Wu, L. Wang and S. Liao, ACS Appl. Mater. Interfaces, 2014, 6, 7585-7595.
- 5 N. Li, Q. Zhang, C. Wang, Y. M. Lee and M. D. Guiver, *Macromolecules*, 2012, **45**, 2411-2419.
- 6 Y. Zhuo, A. Lai, Q. Zhang, A. Zhu and M. Ye, Q. Liu, J. Mater. Chem. A, 2015, 3, 18105-18114.
- 7 C. Wang, B. Shen, C. Xu, X. Zhao and J. Li, J. Membr. Sci., 2015, 492, 281-288.
- 8 S. He and C.W. Frank, J. Mater. Chem. A, 2014, 2, 16489-16497.