Supporting Information

One "Click" to Controlled Bifunctional Supported Catalysts for the Cu/TEMPO-Catalyzed Aerobic Oxidation of Alcohols

Antony E. Fernandes,^{[a],[b]} Olivier Riant,^[a] Alain M. Jonas,^[a] and Klavs F. Jensen^[b]

[a] Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Louvain-la-Neuve, 1348, Belgium [b] Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

E-mail: antony.fernandes@uclouvain.be, kfjensen@mit.edu

Reagents were obtained from commercial sources and used without further purification. All reactions were carried out under N₂. Spherical silica gel (40-75 μm, 100 Å) was purchased from Sorbtech Technologies. Milli-Q water (resistivity 18.2 MΩ.cm) was obtained from a Millipore system (Elga Purelab Ultra). FT-IR was measured on a Thermo Scientific FTIR 6700 spectrometer. TGA was measured on a TA Q5000 instrument. Physisorption measurements were done on a Quantachrome Autosorb-iQ system. AAS was performed on a Agilent 200 Series AA spectrometer equipped with a GTA 120 graphite tube atomizer. Prior to AAS analysis, the samples were treated with ultrapure aqua regia (3:1 concentrated HCl:HNO₃) and the resulting solution diluted 500 times before analysis. **(Caution! Aqua regia is a very corrosive oxidizing agent, which should be handled with great care).** NMR spectra were recorded on a Bruker-400 spectrometer. XPS was performed on a Physical Electronics Phi5000 Versaprobe II instrument. EPR spectra were obtained using a Bruker EMX spectrometer. GC was performed on a Hewlett Packard HP 6890 Series equipped with a FID and MS detector.

Synthetic procedure

Preparation of azide-functionalized silica 1

Commercially available spherical silica gel (Sorbtech Technologies, 40-75 μ m, 100 Å) was activated by boiling in HCl 6 M for 1 day. The silica was filtered and washed with deionized water until neutral pH and dried in oven for 2 days at 120 °C. The resulting silica was then placed in a round-bottom flask and heated at 120 °C under vacuum for 2 hours. The flask was then allowed to cool to room temperature and toluene (20 mL/g) was added together with AzPTMS¹(2 mmol/g) and the resulting mixture refluxed overnight. The silica was then filtered, washed with toluene, CH_2Cl_2 and finally extracted using a CH_2Cl_2 soxhlet for 1 day. The obtained azide functionalized silica was placed in a round-bottom flask and dried under vacuum at 60 °C overnight. The flask was then cooled with liquid nitrogen and HMDS (1.5 mL/g) was added under vacuum. The resulting mixture was finally heated at 80 °C for 8 hours. The silica was filtered, washed with CH₂Cl₂ and finally extracted using a CH_2Cl_2 soxhlet for 1 day to give **1**.

General procedure for the CuAAC ligation

Azide-functionalized silica **1** was suspended in degassed DMF (15 mL/g). Alkyne(s) (1.4 equiv.) was added followed by Et_3N (5 equiv.) and CuI (10 mol%). The reaction was stirred at 50 °C for 2 days and monitored by FT-IR. The functionalized silica was recovered by filtration, washed with CH₃CN, Na₂EDTA (0.05 M), water, CH₃CN, CH₂Cl₂ and finally extracted using a CH₃CN soxhlet for 1 day.

General procedure for Cu complexation

Pyta-functionalized silica **4** and **6a-e** were suspended in a degassed solution of $Cu(CH_3CN)_4OTf$ in CH_3CN (0.02 M, 20 mL/g of silica) and the reaction stirred 1 day at room temperature. The suspension was then filtered and washed thoroughly with CH_2Cl_2 .

Representative procedure for the aerobic oxidation of alcohols

The catalyst was added to a solution of alcohol (0.26 mmol) and dodecane (0.26 mmol) in toluene (0.2 M) and heated at 80 °C under O_2 bubbling (5.5 mL/min). Aliquots (10 μ L) were periodically taken and analyzed by GC.

FT-IR

wavelength (cm-1)

Figure S1. FT-IR spectra of 1, 4, 5 and 6a-e.

TGA

Thermogravimetric analysis was done at a temperature ramp rate of 10 °C/min under N_2 .

Figure S2. TGA of 1, 4, 5 and 6a-e.

Figure S3. XPS survey scan of 1, 4, 5 and 6a-e.

Figure S4. XPS survey scan and Cu 2p HR region of **4.Cu** and **6a-e.Cu**.

Physisorption

Sample	S_{BET} (m ² /g)	Pore volume	Pore diameter
		(BJH, desorption) (cm ³ /g)	(BJH, desorption) (nm)
1	293	0.66	6.80
4	250	0.54	6.26
5	269	0.58	5.76
6a	231	0.53	5.82
6b	238	0.54	5.80
6c	213	0.52	5.42
6d	249	0.54	5.80
6e	222	0.46	6.26

Table S1. Physisorption analysis of 1,4,5 and 6a-e.

EPR

EPR calibration curve was prepared by mixing TEMPO with pristine mesoporous spherical silica.

Figure S5. EPR calibration curve of TEMPO/silica.

Catalysis

Catalyst	% of 2	k (×10 ⁻⁵ s ⁻¹)
6a.Cu	75	1.01
6b.Cu	50	1.92
6c.Cu	25	2.25
6d.Cu	12.5	2.66
6e.Cu	6.25	1.07
4.Cu/TEMPO	-	n.d.
4.Cu + 5	-	n.d.

Table S2. Pseudo-rate constants k. Conditions: BnOH (0.26 mmol), dodecane (0.26 mmol) in toluene (0.2 M), 0₂, 80 °C.

Reference

1 L. Deiana, L. Ghisu, S. Afewerki, O. Verho, E. V. Johnston, N. Hedin, Z. Bacsik and A. Córdova, Adv. Synth. Catal., 2014, 356, 2485.