Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting information (SI)

TiO₂ sol-embedded in electroless Ni-P coating: A novel approach for ultra-

sensitive sorbitol sensor

Pranee Rattanawaleedirojn^{a,*}, Kanokwan Saengkiettiyut^a,

Yuttanant Boonyongmaneerat^a, Supin Sangsuk^b, Nadtinan Promphet^c, Nadnudda Rodthongkum^a

^aMetallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok 10330 Thailand

^bSchool of Agricultural Resources, Chulalongkorn University, Soi Chula 64, Phayathai Road, Pathumwan, Bangkok 10330 Thailand

^cNanoscience and Technology Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand

*Corresponding author e-mail: pranee.r@chula.ac.th (Rattanawaleedirojn, P.)

Fig. S1 The configuration of an electrochemical cell used in this work.

Fig. S2 An XRD spectrum of white TiO_2 powder after calcination at 600 °C for 1 hour (Rigaku, SmartLab, scan rate 10-80 degree, speed 1 degree/min, step 0.01 degree).

Fig. S3 SEM images of TiO_2 sol in Ni-P electroless bath.

Ra = 19.02 nmS = 2.646 x 10⁷ nm²

Ra = 19.96 nm S = 2.522 x 10^7 nm²

Fig. S4 AFM images indicating the surface area (S) of (a) Ni-P-TiO₂ (2 g/L of TiO₂) coating, (b) Ni-P/Ni-P (0 g/L of TiO₂) coating, (c) Ni-P/Ni-P-TiO₂ (2 g/L of TiO₂) coating and (d) Ni-P/Ni-P-TiO₂ (4 g/L of TiO₂) coating. (SPA-400 atomic force microscope (Seiko Instruments, Inc., Japan), using non-contact mode).

Fig. S5 An SEM image of Ni-P-TiO₂ (top) and the surface mapping indicates the distribution of Ti on the coated surface (bottom).

Fig. S6 Reproducibility of Ni-P/Ni-P-TiO₂ electrode for 10 consecutive detection of sorbitol.

Electrode	% of current signal compared to an original current signal				
	Methanol	Ethanol	Isopropanol	Sorbitol	Glucose
Ni-P	85.1 ± 13	84.4 ± 25	83.0 ± 11	85.0 ± 16	83.2±12
Ni-P-TiO ₂	89.0 ± 3.9	90.1 ± 2.6	89.0 ± 3.5	91.0 ± 4.1	83.3±1.9
(2 g/L of TiO ₂)					
Ni-P/Ni-P-TiO ₂	91.5 ±1.4	93.7 ± 1.2	93.6±1.6	96.4 ± 1.1	89.5 ±3.4
(2 g/L of TiO ₂)					

Table S1 Stability of electrode for the detection of different compounds after storage for 7 days.