Electronic Supplementary Information

Design, synthesis and mesomorphic behaviour of four-ring achiral bent-core liquid crystal in the nematic phase.

Amina Nafees, ^a Aloka Sinha,*^a Nandiraju V. S. Rao, ^b Gayatri Kalita, ^b Golam Mohiuddin^b and Manoj Kumar Paul^b

^a Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India; E-mail: <u>aloka@physics.iitd.ac.in</u>; Tel: +91-11-26596003 (O).

^bChemistry Department, Assam University, Silchar-788011, Assam, India; E-mail: <u>drnvsrao@gmail.com</u>; Tel: +91-9493222541.

Table 1: DFT calculated bend angle θ as shown in **Figure 1**, dihedral angles, dipole moment components (μ_X , μ_Y , μ_Z), and the resultant dipole moment (μ).

1 (1	A) [1) [L)	,		1 (1	/						
Compound	Dipole n	noment	(Debye)		E (a. u.)	Dihedral	Bend				
	μ _x	μ _y	μ _z	$\mu_{\text{resultant}} =$	(RB3LYP)	angle °	angle (°)				
				$(\mu_x^2 + \mu_y^2 + \mu_z^2)^{1/2}$			θ				
GK3	-1.94	0.50	-4.37	4.80	-1936.17038134	102, 137	142				
GK4	-1.94	0.56	-4.43	4.87	-1975.49460944	102, 137	142				
GK3up	2.08	0.36	4.62	5.08	-1936.17041798	104, 136	142				
GK4up	2.09	0.39	4.69	5.15	-1975.49464247	104, 136	142				
GK5	-1.33	1.83	-4.32	4.87	-1936.16898438	135, 138	148				
GK6	-1.33	1.70	-4.45	4.94	-1975.49320973	135, 137	148				
GK5up	1.58	3.05	3.86	5.15	-1936.16533011	138, 138	146				
GK6up	1.57	3.04	3.95	5.23	-1975.48953659	138, 138	146				
GK1	-1.58	1.87	-4.69	5.29	-1896.84218270	136,137	146				
GK2	-1.57	1.74	-4.81	5.36	-1936.16640494	136,137	146				
The values relative to angles and dipole moment are expressed in degree (°) and Debye (D)											
respectively											

Table 2: DFT calculated principal polarizability components ^a (α_{XX} , α_{YY} , α_{ZZ}), isotropic											
polarizability $\alpha^{iso} = (\alpha_{XX} + \alpha_{YY} + \alpha_{ZZ})/3$, Polarizability anisotropy $\Delta \alpha = [\alpha_{XX} - (\alpha_{YY} + \alpha_{ZZ})/2]$, and											
asymmetry parameter, $\eta = [(\alpha_{yy} - \alpha_{zz})/(\alpha_{yy} - \alpha^{iso})]$. Parameters relative to the molecular											
polarizability tensor in the Cartesian Reference frame											
Compound	α_{XX}	α_{YY}	α_{ZZ}	α_{iso}	Δα	η_{α}					
CV2	055	260	244	552	(02	0.0200					
GKSup	933	300	344	555	003	0.0398					
GK4up	969	373	353	566	606	0.0496					
r		- / -									
GK5	1004	326	357	563	660	0.0703					
	10.00										
GK6	1020	335	370	575	667	0.0786					
CK1	001	215	340	540	662	0.0565					
GNI	991	515	540	549	005	0.0303					
GK2	1007	324	353	561	668	0.0632					
				_							
^a All polarizability components and the anisotropy parameter are calculated in Bohr ³ (with 1											
Bohr = 0.52917 Å).											
Bonr = 0.5291 / A).											

Figure S2: 13C NMR spectra of compounds GK5 recorded on Bruker Avance AV- III 400 MHz NMR spectrometer.