Supporting materials

Correspondence and requests for materials should be addressed to X.W.(wangxin@alum.imr.ac.cn) and P.-C.Z.(zpc113@sohu.com)

Ductile-to-brittle transition and materials' resistance to amorphization by irradiation damage

Xin Wang^{1,2}, Yuting Zhang¹, Pengchuang Liu¹, Jiawei Yan³, Wenlin Mo³, Pengcheng Zhang¹ & Xingqiu Chen²

1.Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box:9-35, Huafengxincun, Jiangyou, Sichuan,621908, P.R. China

2. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, Wenhua Road No.72, Shenhe District, Shenyang, Liaoning, 110016, P.R. China

3. Institute of Materials, Chinese Academy of Engineering Physics, P.O.Box:No.9, Huafengxincun, Jiangyou, Sichuan, 621907, China

* The shear and bulk moduli are calculated within Voigt approximation. MD represents molecular dynamics. Expt reveals that this data is from experimental findings on single crystal. Calc suggest that this data is from calculations based on DFT. EMTO is the abbreviation of exact muffin-tin orbitals (EMTO) method.

		C	C	C	G	D		C/P	Cauchy Drassura/D	Nota
fcc-Zr	a 4 52	C_{11}	C_{12}	53 53	U	D	V	G/D	Caucity Pressure/B	FPI APW ¹
fcc-Zr	4.52	115	- 78	48	33	90	0 3373	0 3649	0 3270	This work
fcc-Al	4 04	114 3	61.92	31.62	29	79	0.3355	0.3694	0.3270	Expt ²
fcc-Al	4.038	105.3	65.1	31	26	79	0.3506	0.3319	0.4343	This work
fcc-Au	4.079	192.3	163.1	42	28	173	0.4244	0.1592	0.7007	$Expt(300K)^3$
fcc-Au	4.173	141	133	30	24	185	0.4376	0.1301	0.7545	This work
fcc-Cu	-	171.0	123.9	75.6	48	140	0.3458	0.3438	0.3444	Expt ⁴
fcc-Cu	3.635	178	145	69	39	156	0.3847	0.2499	0.4876	This work
fcc-Ir	3.877	582.1	230.3	252	218	348	0.2404	0.6279	-0.0627	This work
fcc-Ir	3.829	596	252	270	225	367	0.2450	0.6146	-0.0491	Calc ⁵
fcc-Ir	-	580	242	256	225	367	0.2450	0.6146	-0.0491	Expt ⁶
fcc-Ag	-	124	93.4	46.1	30	104	0.3693	0.2863	0.4566	Expt ⁶
fcc-Ag	-	115.8	89	40.7	26	98	0.3776	0.2665	0.4932	Calc ⁶
fcc-Pd	-	227.1	176	71.73	47	193	0.3864	0.2458	0.5402	Expt ⁶
fcc-Pd	-	198.1	149.7	55.2	40	166	0.3893	0.2391	0.5698	This work
fcc-Pt	-	346.7	250.7	76.5	63	283	0.3956	0.2244	0.6162	Expt ⁶
fcc-Pt	-	289.9	224.9	45.9	40	247	0.4231	0.1620	0.7261	This work
fcc-Ni	-	243.6	149.4	119.6	82	181	0.3024	0.4553	0.1648	Expt ⁶
fcc-Ni	-	268.2	159.7	130.2	92	196	0.2976	0.4679	0.1505	This work
bcc-Mo	3.150	496	159	107	125	265	0.2958	0.4729	0.1974	This work
bcc-Mo	-	464.7	161.5	109	124	263	0.2955	0.4736	0.2003	Expt/
bcc-Nb	3.322	238	143	14	24	174	0.4346	0.1368	0.7350	This work
bcc-Nb	-	246.6	133.2	28.1	3/	1/1	0.3981	0.2185	0.6146	Expt'
bcc-Fe	2.870	239.55	150.75	120.75	80	1/0	0.2838	0.5051	0.0881	Expt ^o
bcc-la	3.30	200.32	158.10	8/.30	162	194	0.3349	0.3/11	0.3645	Expt ^o
bcc-w	3.10	5166	204.95	103.13	103	314 205	0.2784	0.5200	0.1333	Expl [*]
bee V	-	222.4	199.7	140.7	50	303 157	0.2674	0.4955	0.1730	Evet ⁸
bee Cr	5.05	204 1	88 5	45.95	121.2	100 /	0.3302	0.5160	0.4073	OK ⁹
bcc-Cr	-	474 Q	54 5	97 <i>4</i>	121.2	178	0.2374	0.0307	-0.2410	This work
bcc-Li	3 4 3 9	15.1	13.4	12.7	79	13.9	0.2150	0.7699	0.0493	This work*
bcc-Li	3.471	-	-	11.7	1.7	14.1		0.0000	0.0175	Calc ¹⁰
bcc-Na	4.193	8.7	7.4	6.8	4.33	7.87		0.5502	0.0829	This work*
bcc-Na	4.200	-	-	6.3		7.67		0.0002	01002)	Calc ¹⁰
bcc-K	4.166	4.5	4.0	2.9	1.8	4.2		0.4286	0.2706	This work*
bcc-K	-	-	-	2.9		3.77				Calc ¹⁰
bcc-Rb	-	-	-	2.2		3.17				Calc ¹⁰
bcc-Rb	-	3.1	2.7	2.1	1.33	2.8		0.4750	0.2200	This work*
bcc-Cs	-	-	-	1.61	2.32					Calc ¹⁰
Diamond-C	3.567	1079	124	578	535	442	0.069	1.2105	-1.0263	Expt ¹¹
Diamond-C	3.557	-	-	534						LCAO ¹²
Diamond-C	3.572	1051.4	125.9	560	519	434	0.073	1.195	-1.000	This work
Diamond-Si	5.4309	-	-	-						Expt ¹³
Diamond-Si	5.4345	-	-	-						PBE-HSE
Diamond-Si	5.468	153.3	56.8	75	63	89	0.2150	0.7038	-0.1996	This work
SiC	4.3596	390	142	256	191	225	0.1683	0.8518	-0.5074	Expt ¹⁴
SIC	4.315	420	126	287	219	224	0.1308	0.9/95	-0.7188	
SIC	4.20	383	126.6	240.2	187	212	0.1597	0.8803	-0.5355	This work
AIN	4.58	328	159	133	116	202	0.2590	0.5742	0.029/	
GaN	4.54	264	153	68	63	190	0.3514	0.3299	0.4474	Calc ¹⁰
ININ S: M	5.03	1/2	119	3/ 2/10	32 250	15/	0.3902	0.2308	0.0000	Calc ¹⁷
SI3IN4	-	305 1	191.2	541.0 224 5	238 176	202 242	0.1098	0.8409	-0.4911	Cale ¹⁷
Ge_3N_4	-	393.1 292.4	105.4	234.3 52.9	1/0	242 169	0.2072	0.7277	-0.2830	Calc ¹⁸
	-	202.4	106.4	35.0	206	205	0.3262	0.3001	0.3301	Calc ¹⁹
TIN	-	625	100.4	162	200	293	0.2107	0.0985	-0.2030	Exet ¹⁹
TiCrN	-	640.35	123.0	160.22	107	200	0.2342	0.5679	0.1214	Cale ¹⁹
TiZrN	-	503.80	85.07	147.15	183	299	0.2310	0.0558	-0.1214	Calc ¹⁹
TINHN	-	595.09	102.85	146.58	180	255 266	0.2093	0.7200	-0.2430	Calc ¹⁹
TiVN	-	574 78	102.03	150.19	182	200 274	0.2230	0.6676	-0.1044	Calc ¹⁹
TiWN	-	574.01	154 7	134 12	161	294	0.2270	0.5451	0.0700	Calc ¹⁹
TiMoN	-	573 33	191 23	145 00	167	29 4 310	0.2094	0.5084	0.1450	Calc ¹⁹
TiAIN	_	503.87	143.05	174.01	177	263	0.2261	0.6703	-0 1173	Calc ¹⁹
Zr_2Al	_	146.45	74.27	75.67	56	98	0.2599	0.5717	-0.0142	Calc ²⁰
PdZr(Pm-3m)	-	152.9	141.3	34.1	17	145	0.4431	0.1183	0.7385	Calc ²¹
MgAl ₂ O ₄	-	266.2	148.0	148.6	103	187	0.2684	0.5479	-0.0032	Calc ¹⁷
MgAl ₂ O ₄	-	282.9	154.8	155.4	109	198	0.2671	0.5514	-0.0030	Expt ¹⁷
Mg ₂ SiO ₄	-	333.7	111.0	140.0	128	185	0.2196	0.6896	-0.1566	Calc ¹⁷
Mg_2SiO_4	-	327.0	126.0	112.0	107	193	0.2656	0.5557	0.0725	Expt ¹⁷

TABLE I: The calculated lattice parameters (in Å) and elastic properties (in GPa) of typical fcc and bcc metals, as well as experimental results.

	а	C ₁₁	C ₁₂	C ₄₄	G	В	ν	G/B	Cauchy Pressure/B	Note
NaCl	-	51.6	12.2	13.6	16	25	0.2421	0.6229	-0.0553	Expt ²²
NaCl	-	49.11	12.25	12.84	15	25	0.2483	0.6050	-0.0240	Expt ⁴
NaCl	5.653	48.97	11.87	12.31	15	24	0.2504	0.5988	-0.0181	This work
NaCl	-	57.33	11.23	13.31	16.6	26.6	0.2415	0.6246	-0.0782	$4.2K^{23}$
NaCl	-	56.48	11.42	13.30	16.4	26.4	0.2424	0.6221	-0.0711	80K ²³
NaCl	-	50.45	12.99	12.95	15.0	25.5	0.2537	0.5895	0.0016	$240K^{23}$
NaCl	-	49.85	13.05	12.85	14.8	25.3	0.2548	0.5862	0.0079	$260K^{23}$
NaCl	-	49.27	13.08	12.75	14.7	25.1	0.2557	0.5836	0.0131	$280K^{23}$
NaCl	-	48.70	13.11	12.66	14.5	25.0	0.2566	0.5811	0.0180	$300K^{23}$
NaCl	-	49.5	13.2	12.79	14.7	25.3	0.2564	0.5818	0.0162	$300K^{24}$
NaCl	-	47.6	13.3	12.62	14.3	24.7	0.2580	0.5770	0.0275	350K ²⁴
NaCl	-	44.1	13.5	12.26	13.4	23.7	0.2622	0.5653	0.0523	$450K^{24}$
NaCl	-	40.5	13.5	11.90	12.5	22.5	0.2654	0.5563	0.0711	550K ²⁴
NaCl	-	37.0	13.1	11.52	11.7	21.1	0.2659	0.5549	0.0750	$650K^{24}$
NaCl	-	33.7	12.9	11.10	10.8	19.8	0.2693	0.5453	0.0908	$750K^{24}$
NaF	-	108.5	22.9	28.99	34.5	51.4	0.2298	0.6591	-0.1184	$4.2K^{*23}$
NaF	-	107.1	23.12	28.97	34.2	51.1	0.2302	0.6579	-0.1145	80K* ²³
NaF	-	98.62	24.28	28.19	31.7	49.1	0.2356	0.6419	-0.0797	260K* ²³
NaF	-	98.07	24.36	28.13	31.3	48.9	0.2360	0.6406	-0.0770	$270K^{23}$
NaF	-	97.49	24.44	28.07	31.45	48.79	0.2365	0.6393	-0.0744	280K* ²³
NaF	-	96.90	24.52	28.01	31.0	48.6	0.2369	0.6380	-0.0717	$290K^{23}$
NaF	-	96.3	24.59	27.94	30.9	48.5	0.2374	0.6367	-0.0691	$300K^{23}$
NaBr	-	48.0	9.86	10.7	14.0	22.6	0.2504	0.5986	-0.0372	$4.2K^{*23}$
NaBr	-	46.45	9.88	10.6	13.7	22.1	0.2505	0.5985	-0.0326	80K* ²³
NaBr	-	41.53	9.95	10.17	12.4	20.5	0.2525	0.5928	-0.0107	240K* ²³
NaBr	-	40.92	9.97	10.11	12.3	20.3	0.2530	0.5914	-0.0069	260K* ²³
NaBr	-	40.31	9.99	10.05	12.1	20.1	0.2535	0.5899	-0.0030	280K* ²³
NaBr	-	39.70	10.01	9.98	11.9	19.9	0.2542	0.5880	-0.0015	300K* ²³
RbBr	-	38.63	4.74	4.085	9.2	16.0	0.2583	0.5762	0.0408	$4.2K^{*23}$
RbBr	-	38.53	4.74	4.083	9.2	16.0	0.2586	0.5755	0.0411	20K* ²³
RbBr	-	38.2	4.74	4.076	9.14	15.9	0.2588	0.5749	0.0418	40K* ²³
RbBr	-	37.75	4.74	4.068	9.04	15.7	0.2590	0.5744	0.0427	$60K^{23}$
RbBr	-	37.25	4.74	4.05	8.9	15.6	0.2593	0.5734	0.0443	80K* ²³
RbBr	-	31.35	5.12	3.77	7.51	13.9	0.2705	0.5418	0.0971	290K* ²³
RbBr	-	31.07	5.15	3.76	7.44	13.8	0.2714	0.5395	0.1007	300K* ²³
KCl	-	40.95	7.05	6.30	9	18	0.2795	0.5169	0.0409	Expt ⁴
KCl	6.364	38.7	6.9	6.5	9	18	0.2734	0.5338	0.0269	This work
KCl	-	40.1	5.45	6.35	10.7	17.0	0.2391	0.6318	-0.0530	$300K^{25}$
KCl	-	36.9	5.40	6.21	10.0	15.9	0.2396	0.6302	-0.0509	$400K^{25}$
KCl	-	33.8	5.15	6.11	9.40	14.7	0.2364	0.6395	-0.0653	500K ²⁵
KCl	-	31.1	5.0	5.96	8.8	13.7	0.2355	0.6423	-0.0700	$600K^{25}$
KCl	-	28.2	4.8	5.79	8.2	12.6	0.2339	0.6468	-0.0786	700K ²⁵
KCl	-	25.5	4.5	5.57	7.5	11.5	0.2321	0.6522	-0.0930	800K ²⁵
KCl	-	23.5	4.6	5.57	7.1	10.9	0.2324	0.6514	-0.0890	850K ²⁵
LiI	6.013	33.7	13.1	13.9	12	20	0.2443	0.6164	-0.0381	This work
LiCl	-	49.27	23.1	24.95	19	32	0.2482	0.6051	-0.0581	Expt ²³
LiCl	-	51.8	21.9	23.6	20	32	0.2441	0.6171	-0.0545	This work
NaF	-	96.9	24.5	28.01	31	49	0.2368	0.6383	-0.0722	Expt ²³
NaF	-	127.4	25.6	33	39	60	0.2294	0.6604	-0.1252	This work
NaBr	-	40.0	10.0	10.02	12	20	0.2538	0.5892	-0.0009	Expt ²³
KF	-	64.9	15.2	12.32	16	32	0.2800	0.5157	0.0907	Expt ²⁵
RbCl	-	36.46	6.47	4.68	7.6	16.4	0.2993	0.4634	0.1087	Expt ²⁵
RbBr	-	31.35	5.12	3.774	6.4	13.9	0.3001	0.4612	0.0971	Expt ²⁵
RbI	-	25.75	3.4	2.778	5.1	10.9	0.2984	0.4658	0.0573	Expt ²⁵
NaH(NaCl)	-	47.3	2.5	22.5	22.5	17.4	0.0494	1.288	-1.147	Expt ²⁶
NaH(NaCl)	-	59.1	9.2	22.02	23.1	25.8	0.1550	0.8961	-0.4963	GGA ²⁰
NaH(CsCl)	-	73.02	11.9	30.11	30.3	32.3	0.1426	0.9385	-0.5642	GGA ²⁰
RbH(NaCl)	-	26.46	7.93	10.97	10.3	14.1	0.2072	0.7277	-0.2157	GGA ²⁰
RbH(CsCl)	-	42.0	1.4	12.0	14.8	14.9	0.1269	0.9933	-0.7098	GGA ²⁰
RbH(NaCl)	-	26.46	7.93	10.97	10.3	14.1	0.2072	0.7277	-0.2157	GGA ²⁰
RbH(CsCl)	-	42.0	1.4	12.0	14.8	14.9	0.1269	0.9933	-0.7098	GGA ²⁰
L1H(NaCl)	-	66.4	15.6	45.8	36.2	32.5	0.0946	1.1112	-0.9283	Expt ²⁰
LiH(NaCl)	-	84.7	14.0	48.9	42.9	37.6	0.0863	1.1423	-0.9287	this work
L1H(CsCl)	-	66.5	12.0	32.0	30.0	30.2	0.1265	0.9947	-0.6630	GGA ²⁰
KH(NaCl)	-	31.1	8.35	14.47	13.1	15.9	0.1766	0.8247	-0.3841	GGA ²⁶
KH(CsCl)	-	51.0	4.5	20.0	21.2	20.0	0.1078	1.062	-0.7750	GGA ²⁰
CsH(NaCl)	-	23.23	6.761	9.74	9.1	12.3	0.2021	0.7434	-0.2432	GGA ²⁰
CsH(CsCl)	-	38.0	3.2	6.5	9.8	14.8	0.2295	0.6599	-0.2230	GGA ²⁰

TABLE II: The calculated lattice parameters (in Å) and elastic properties (in GPa) of cubic structures, as well as experimental results(continued)

	0	0	0		D		<u>C</u> /D		N
Na	$\frac{C_{11}}{1.21}$	C_{12}	0.58	G 0.46	B 0.97	V 0.2742	$\frac{G/B}{0.5217}$	Cauchy Pressure/B	This work
Ne	1.31	0.05	0.58	0.40	0.87	0.2742	0.3317	0.0805	1 mis work OCD_{2} 22 $7V^{27}$
INC No	1.200	0.752	0.055	0.427	0.89	0.2952	0.4798	0.1112	00Pa, 25.7K
INC A r	1.173	0.74	1.24	0.398	0.885	0.3040	0.4495	0.1058	00Pa, 24.5K
Ar	2.40	1.55	1.24	0.84	1.65	0.3017	0.4371	0.1370	00Pa,82K
Ar	2.38	1.30	1.12	0.75	1.83	0.3202	0.4085	0.2400	82.3K ²²
Ar	10	8.4	1.5	5.7	10.9	0.2770	0.5222	0.0823	2GPa, RT ³⁰ 4CD- DT ³⁰
Ar	32	10.5	11.0	9.9	21.5	0.3003	0.4607	0.2185	4 GPa, $R1^{30}$
Ar	48	21.9	17.6	15.6	30.6	0.2820	0.5102	0.1405	6GPa,R1 ⁵⁰
Ar	/4	33.3	27.1	24.2	46.9	0.2800	0.5156	0.1323	10GPa,R1 ³⁰
Ar	109	44	41	37.4	65.7	0.2609	0.5689	0.0457	15GPa,RT ³⁰
Ar	142	54	54	49.8	83.3	0.2510	0.5970	0.0000	20GPa,RT ³⁰
Ar	178	63	68	63.6	101.3	0.2405	0.6275	-0.493	25GPa,RT ³⁰
Ar	211	/1	80	75.8	111.7	0.2347	0.6445	-0.0765	30GPa,RT ⁵⁰
Kr	4.99	2.86	2.69	1.85	3.57	0.2785	0.5197	0.0476	This work
Kr	5.14	2.84	2.68	1.9	3.61	0.2751	0.5292	0.0444	0GPa,10K ⁵¹
Kr	2.89	1.85	1.44	0.96	2.20	0.3097	0.4359	0.1866	0GPa,114K ²⁷
Kr	2.657	1.725	1.261	0.85	2.04	0.3174	0.4157	0.2279	0GPa,115.6K ³²
Kr	14	8	11	7.8	10.0	0.1905	0.7800	-0.3000	2GPa,RT ³³
Kr	36	17	21	16.4	23.3	0.2149	0.7039	-0.1714	5GPa,RT ³³
Kr	71	29	34	28.0	43.0	0.2323	0.6518	-0.1163	10GPa,RT ³³
Kr	101	46	45	36.9	64.3	0.2591	0.5741	0.0155	15GPa,RT ³³
Kr	131	62	56	50	83.3	0.2510	0.5970	0.0000	20GPa,RT ³³
Kr	160	79	64	53.3	106.0	0.2848	0.5026	0.1415	25GPa,RT ³³
Kr	184	97	70	57.8	126.0	0.3009	0.4591	0.2143	30GPa,RT ³³
Kr	205	118	73	59.3	147.0	0.3222	0.4035	0.3061	35GPa,RT ³³
Xe	5.45	3.17	2.97	2.0	3.93	0.2803	0.5148	0.0509	This work
Xe	5.27	2.82	2.95	2.1	3.64	0.2604	0.5702	-0.0357	0GPa,10K ³⁴
Xe	2.98	1.9	1.48	0.99	2.26	0.3092	0.4373	0.1858	0GPa,156K ³⁵
Xe	7.20	5.15	2.92	1.92	5.83	0.3517	0.3292	0.3823	0.45GPa,296K ³⁶
Xe	19.1	13.1	8.55	5.6	15.1	0.3344	0.3723	0.3013	2.11GPa,296K ³⁶
Xe	24.7	17.2	10.9	7.1	19.7	0.3389	0.3610	0.3198	2.96GPa,296K ³⁶
Xe	28.9	19.3	12.6	8.6	22.5	0.3312	0.3804	0.2978	3.73GPa,296K ³⁶
Xe	36.7	24.0	14.8	10.5	28.2	0.3340	0.3733	0.3259	4.95GPa,296K ³⁶
Xe	43.0	28.7	18.3	12.6	33.5	0.3333	0.3751	0.3108	6.08GPa,296K ³⁶
Xe	55.7	37.5	22.5	15.6	43.5	0.3396	0.3592	0.3443	8.04GPa,296K ³⁶
Xe	63.7	42.3	26.7	18.5	49.4	0.3336	0.3743	0.3156	10.6GPa,296K ³⁶
Al-Li0.05	103.1	60.6	42.1	31.9	74.8	0.3127	0.4280	0.2474	EMT ³⁷
Al-Li0.10	101.1	58.2	43.3	32.6	72.5	0.3042	0.4505	0.2055	EMTO ³⁷
Al-Li0.15	94.7	54.9	42.5	31.3	68.2	0.3007	0.4598	0.1819	EMTO ³⁷
Al-Li0.20	91.0	50.1	40.9	30.9	63.7	0.2909	0.4859	0.1444	EMTO ³⁷
Fe-Cr0.025	284.2	131.5	108.6	94.3	182.4	0.2795	0.5170	0.1256	EMTO ³⁸
Fe-Cr0.05	280.0	126.9	112.8	96.6	177.9	0.2702	0.5427	0.0792	EMTO ³⁸
Fe-Cr0.075	283.5	127.2	117.5	99.8	179.3	0.2653	0.5565	0.0541	EMTO ³⁸
Fe-Cr0.10	287.8	127.9	120.7	102.3	181.2	0.2624	0.5647	0.0397	EMTO ³⁸
Fe-Cr0.125	292.3	129.5	122.4	103.9	183.8	0.2621	0.5656	0.0386	EMTO ³⁸
Fe-Cr0.15	296.8	131.7	124.1	105.4	186.7	0.2625	0.5644	0.0407	EMTO ³⁸
Fe-Cr0.175	305.0	137.2	125.6	106.8	193.1	0.2665	0.5532	0.0601	EMTO ³⁸
Fe-Cr0.2	305.5	136.3	126.0	107.4	192.7	0.2650	0.5574	0.0535	EMTO ³⁸
Fe-Cr0.2	305.5	136.3	126.0	107.4	192.7	0.2650	0.5574	0.0535	EMTO ³⁸
Fe-Mg0.025	263.7	125.3	103.6	88.1	171.4	0.2806	0.5141	0.1266	EMTO ³⁸
Fe-Mg0.05	235.8	112.7	101.0	82.8	153.7	0.2717	0.5386	0.0761	EMTO ³⁸
Fe-Mg0.075	211.0	102.4	98.9	77.8	138.6	0.2637	0.5610	0.0253	EMTO ³⁸
Fe-Mg0.1	189.7	93.4	97.9	73.6	125	0.2546	0.5867	-0.0359	EMTO ³⁸
NiCoFeCr	271	175	189.3	109.9	207	0.2358	0.6414	-0.0691	EMTO ³⁹
NiCoFeCrTi	184.5	170.9	127.0	47.3	175.4	0.3044	0.4497	0.2502	EMTO ³⁹
CuNiCoFeCrTi0.1	219.7	152.6	160.2	109.5	174.9	0.2410	0.6261	-0.0434	EMTO ³⁹
CuNiCoFeCrTi0.2	213.6	152.1	155.1	105.4	172.6	0.2464	0.6104	-0.0174	EMTO ³⁹
CuNiCoFeCrTi0.3	209.6	151.9	154.6	104.3	171.1	0.2467	0.6095	-0.0158	EMTO ³⁹
CuNiCoFeCrTi0.4	207.6	151.7	150.8	101.7	170.3	0.2511	0.5968	0.0053	EMTO ³⁹
CuNiCoFeCrTi0.5	198.4	151.0	142.7	95.1	166.8	0.2605	0.5701	0.0498	EMTO ³⁹
CuNiCoFeCrTi0	227.8	154.6	165.3	113.8	179.0	0.2377	0.6359	-0.0598	EMTO ³⁹
CuNiCoFeCrTi1	174.3	148.6	125.0	80.1	157.2	0.2821	0.5099	0.1502	EMTO ³⁹

TABLE III: The elastic properties (in GPa) of cubic structures, as well as experimental results(continued)

TABLE IV: The elastic properties (in GPa) of cubic structures, as well as experimental results(continued)

	C ₁₁	C ₁₂	C ₄₄	G	В	ν	G/B	Cauchy Pressure/B	Note
ZrO ₂ -8mol%Y ₂ O ₃	401.8	95.2	55.8	94.8	197.4	0.2930	0.4802	0.1996	RT* ⁴⁰
ZrO ₂ -11.1mol%Y ₂ O ₃	403.5	102.4	59.9	96.2	202.8	0.2953	0.4742	0.2096	RT* ⁴⁰
ZrO ₂ -12.1mol%Y ₂ O ₃	405.1	105.3	61.8	97.0	205.2	0.2957	0.4729	0.2120	RT* ⁴⁰
ZrO ₂ -15.5mol%Y ₂ O ₃	397.6	108.6	65.8	97.3	204.9	0.2950	0.4749	0.2088	RT* ⁴⁰
ZrO ₂ -17.9mol%Y ₂ O ₃	390.4	110.8	69.1	97.4	204.0	0.2941	0.4775	0.2044	RT*40
ZrO ₂ -11.1mol%Y ₂ O ₃	400.2	101.8	59.0	95.1	201.3	0.2959	0.4724	0.2127	373K* ⁴⁰
ZrO_2 -11.1mol% Y_2O_3	395.6	101.0	57.7	93.5	199.2	0.2971	0.4694	0.2174	473K* ⁴⁰
ZrO_2 -11.1mol% Y_2O_3	389.8	99.8	56.0	91.6	196.5	0.2983	0.4662	0.2229	573K* ⁴⁰
ZrO_2 -11.1mol% Y_2O_3	382.0	97.1	54.1	89.4	192.1	0.2986	0.4654	0.2239	673K* ⁴⁰
ZrO_2 -11.1mol% Y_2O_3	373.1	91.2	52.2	87.7	185.2	0.2955	0.4735	0.2106	773K* ⁴⁰
ZrO_2 -11.1mol% Y_2O_3	364.7	88.9	50.1	85.2	180.8	0.2964	0.4712	0.2146	873K* ⁴⁰
ZrO_2 -11.1mol% Y_2O_3	356.6	86.8	48.0	82.8	176.7	0.2974	0.4686	0.2195	973K* ⁴⁰
ZrO_2 -12.1mol% Y_2O_3	401.6	104.8	60.9	95.9	203.7	0.2965	0.4/0/	0.2155	373K*40
ZrO_2 -12.1mol% Y_2O_3	396.6	104.3	59.5	94.2	201.7	0.2979	0.4670	0.2221	4/3K***
ZrO_2 -12.1mol% Y_2O_3	391.2	102.9	57.9	92.4	199.0	0.2990	0.4643	0.2261	5/3K ^{*+0}
ZrO_2 -12.1mol% Y_2O_3	385.1	02.4	54.9	90.8	195.5	0.2987	0.4649	0.2255	0/3K*** 772V*40
Z_1O_2 -12.11101% I_2O_3 $Z_rO_12.1mol% V_0$	370.9	95.4	52.0	90.0	100.0	0.2941	0.4772	0.2047	972V *40
Z_1O_2 -12.11101% I_2O_3 $Z_rO_12.1mol%VO_2$	364.8	82.6	51.5	09.0 87.3	102.0	0.2090	0.4690	0.1852	073K*40
Z_1O_2 -12.11101% I_2O_3 $Z_rO_155mol%VO_2$	304.0	02.0	51.5 64.0	07.5	203.6	0.2079	0.4941	0.1700	973K*40
Z_1O_2 -15.5mol%V.O.	394.5	108.2	63.5	90.2 04.6	203.0	0.2939	0.4725	0.2120	73K* ⁴⁰
ZrO_2 -15.5mol% V_2O_3	384.7	107.5	61.0	02.8	100.2	0.2970	0.4650	0.2174	573K* ⁴⁰
ZrO_2 -15.5mol% V_2O_3	379.5	105.0	59.9	90.8	199.2	0.2904	0.4621	0.2294	673K* ⁴⁰
ZrO_2 -15.5mol% V_2O_3	373.6	102.0	57.7	88.9	190.5	0.2998	0.4616	0.2295	773K* ⁴⁰
ZrO_2 -15.5mol%Y ₂ O ₃	366.8	98.2	553	86.9	192.0	0.2995	0.4630	0.2305	873K* ⁴⁰
$ZrO_2 - 15.5mol\% Y_2O_3$	360.2	96.3	52.6	84.3	184.3	0.3016	0.4574	0.2203	973K* ⁴⁰
ZrO_2 -17.9mol%Y ₂ O ₂	387.0	109.9	68.1	96.3	202.3	0.2946	0.4760	0.2067	373K* ⁴⁰
ZrO_2 -17.9mol% Y_2O_3	382.8	108.9	66.7	94.8	200.2	0.2955	0.4735	0.2108	473K* ⁴⁰
ZrO_2 -17.9mol% Y_2O_3	378.1	107.5	65.2	93.2	197.7	0.2963	0.4714	0.2140	573K* ⁴⁰
$ZrO_{2}-17.9mol\%Y_{2}O_{3}$	373.4	105.6	63.3	91.5	194.9	0.2970	0.4695	0.2171	673K* ⁴⁰
ZrO ₂ -17.9mol%Y ₂ O ₃	368.2	100.5	61.2	90.3	189.7	0.2946	0.4760	0.2071	773K* ⁴⁰
$ZrO_2-17.9mol\%Y_2O_3$	361.4	98.1	58.8	87.9	185.9	0.2958	0.4728	0.2114	873K* ⁴⁰
ZrO_2 -17.9mol% Y_2O_3	353.8	94.0	56.2	85.7	180.6	0.2951	0.4745	0.2093	973K* ⁴⁰
Fe-30Al	147	96.3	116.3	79.9	113.2	0.2143	0.7058	-0.1767	273K*41
Fe-30Al	137.2	92.4	110.4	75.2	107.3	0.2159	0.7008	-0.1677	428K* ⁴¹
Fe-30Al	134.2	91.4	108.9	73.9	105.7	0.2165	0.6991	-0.1656	473K* ⁴¹
Fe-30Al	131.1	90.4	107.3	72.5	104.0	0.2171	0.6973	-0.1626	523K* ⁴¹
Fe-30Al	128.3	89.6	105.3	70.9	102.5	0.2189	0.6917	-0.1532	573K* ⁴¹
Fe-30Al	123.4	87.3	100.6	67.6	99.3	0.2226	0.6804	-0.1339	673K* ⁴¹
Fe-30Al	117.9	83.8	95.1	63.9	95.2	0.2258	0.6710	-0.1187	773K* ⁴¹
Fe-30Al	111.3	79.7	89.1	59.8	90.2	0.2287	0.6625	-0.1042	873K* ⁴¹
Fe-30Al	103.9	75.8	86.1	57.3	85.2	0.2253	0.6725	-0.1209	973K* ⁴¹
Fe-30Al	92.3	69.3	78.5	51.7	76.9	0.2256	0.6717	-0.1195	1173K* ⁴¹
MgO	298.96	96.42	157.13	131.8	163.9	0.1831	0.8037	-0.3703	300K ⁴²
MgO	292.94	97.02	155.78	129.3	162.3	0.1852	0.7968	-0.3620	400K ⁴²
MgO	296.92	97.64	154.33	126.8	160.7	0.1876	0.7892	-0.3527	500K ⁴²
MgO	280.62	98.0	152.84	124.3	158.9	0.1897	0.7824	-0.3452	600K ⁴²
MgO	2/4.4/	98.43	151.31	121.8	15/.1	0.1921	0.7750	-0.3366	/00K ⁴²
MgO M-O	268.22	98.54	149.68	119.2	155.1	0.1941	0.7685	-0.3297	800K ⁴²
MgO M-O	261.94	98.62	148.1	110.0	155.1	0.1962	0.7620	-0.3233	900K ⁴²
MgO MaO	235.14	90./4 00 C	140.52	114.1	131.1	0.1984	0.7350	-0.3103	1000K ^{*2} 1100V ⁴²
MgO	249.52	90.0	144.//	111.3	146.9	0.2005	0.7483	-0.5101	1200K42
MgO	245.52	90.30	145.00	106.9	140.7	0.2023	0.7425	-0.3040	1200K 1200K ⁴²
MgO	237.13	98.05	141.55	100.5	144.4	0.2044	0.7302	-0.2997	1300K 1400K ⁴²
MgO	230.90	97.50	139.34	105.8	142.0	0.2002	0.7500	-0.3233	1400K 1500K ⁴²
MgO	224.00	96.44	136.24	08.0	137.2	0.2001	0.7249	-0.2920	1600K ⁴²
MgO	217.04	90.44	134.65	90.9 96.6	13/ 0	0.2090	0.7201	-0.2099	1700K ⁴²
MgO	213.43	95.09	133.12	9 <u>4</u> 4	137.7	0.2110	0 7115	-0.2887	1800K ⁴²
CaO	220.18	57 67	80.03	27.7 80.6	111 9	0.2097	0.7198	-0 1997	300K ⁴³
CaO	215.66	57.96	79 34	79 14	110.5	0.2110	0.7161	-0 1934	400K ⁴³
CaO	210.73	58.23	78.70	77.7	109.1	0.2121	0.7125	-0.1877	500K ⁴³
CaO	205.88	58.44	77.94	76.22	107.6	0.2134	0.7085	-0.1812	600K ⁴³
CaO	201.22	58.66	77.18	74.76	106.2	0.2149	0.7041	-0.1744	700K ⁴³
CaO	196.58	58.81	76.46	73.3	104.7	0.2162	0.7002	-0.1685	800K ⁴³
CaO	192.03	58.98	75.72	71.9	103.3	0.2176	0.6958	-0.1620	900K ⁴³
CaO	187.24	58.98	74.92	70.4	101.7	0.2189	0.6920	-0.1567	$1000K^{43}$
CaO	182.74	58.96	74.17	68.9	100.2	0.2200	0.6884	-0.1518	1100K ⁴³
CaO	178.11	58.99	73.48	67.6	98.7	0.2213	0.6845	-0.1468	$1200K^{43}$

TABLE V: The calculated lattice parameters (in Å) and elastic properties (in GPa) of hexagonal and tetragonal structure, as well as experimental results

	а	с	C ₁₁	C ₁₂	C ₁₃	C ₃₃	C ₄₄	C ₆₆	G	В	ν	G/B	Cauchy Pressure/B	Note
Ti	-	-	160	90	66	181	46.5	35	43	105	0.3184	0.4133	0.3548	Expt ⁴⁴
Zr	-	-	145.3	63.9	66.5	165.4	27.5	40.7	36	94	0.3322	0.3779	0.3297	Expt ⁴⁴
Sc	-	-	92.9	31.7	30.1	90.6	31.4	30.6	31	51	0.2479	0.6061	-0.0019	Calc ⁴⁴
Sc	-	-	99.3	39.7	29.4	107	27.7	29.8	31	56	0.2684	0.5478	0.1039	Expt ⁴⁴
Y	-	-	77.4	23.9	21.3	80.9	22.4	26.8	25	41	0.2427	0.6213	-0.049	Calc ⁴⁴
Y	-	-	77.9	29.2	21.0	76.9	24.7	24.4	26	43	0.2525	0.5928	0.0134	Expt ⁴⁴
Re	-	-	649	269.4	187.6	678.1	185	189.8	199	363	0.2678	0.5493	0.1134	Calc ⁴⁴
Re	-	-	634.4	266	202	701.1	169.1	184.2	189	368	0.2804	0.5145	0.1559	Expt ⁴⁴
Tb	-	-	73.8	20.3	18.1	75.2	24.1	26.8	26	37	0.2169	0.6978	-0.1677	Calc ⁴⁴
Tb	-	-	68.6	24.7	22.4	73.3	21.6	22.0	22	39	0.2580	0.5770	0.0451	Expt ⁴⁴
Tc	-	-	525.4	229.7	184.7	596.3	160	147.8	162	316	0.2807	0.5137	0.1686	Calc ⁴⁴
Ru	-	-	622.5	203	179.8	724.6	212.4	210	220	343	0.2361	0.6404	-0.0573	Calc ⁴⁴
Ru	-	-	563	188	168	624	181	187.5	191	311	0.2448	0.6149	-0.0201	Expt ⁴⁴
Gd	-	-	70.0	23.1	18.2	72.1	21.6	23.4	23	37	0.2378	0.6353	-0.0493	Calc ⁴⁴
Gd	-	-	67.8	25.6	20.7	71.2	20.8	21.1	22	38	0.2587	0.5751	0.0585	Expt ⁴⁴
Os	-	-	816.3	225.2	256.1	915	312.7	295.5	305	446	0.2218	0.6831	-0.1422	Calc ⁴⁴
Na ₂ Bi	5.469	9.735	35.9	13.5	4.0	40.9	7.0	11.2	10	17	0.2490	0.6029	-0.0202	This work
Na ₂ Bi	5.448	9.655	-	-	-	-	-	-						Expt ⁴⁵
K ₂ Bi	6.217	11.044	20.0	9.4	3.0	24.7	4.2	5.3	6	11	0.2735	0.5336	0.1372	This work
Graphene	2 4 6 9	8 346	896.6	176.0	23.0	104.3	40.7	360.3	136	177	0 1931	0 7715	-0 5713	This work*
Graphene	2.46	-	-	-	-	-	-	360.3	150	177	0.1701	0.7710	0.0715	Exnt
NaBi	3 4 4 3	4 886	64.6	197	13.6	467	115	91	14	29	0 2933	0 4796	0.2153	This work
	-	000	345	125	120	305	11.5	110	117	201	0.2555	0.5807	0.0422	Expt ⁴⁶
GaN			367	125	103	405	05	116	117	201	0.2507	0.5575	0.0422	$Calc^{46}$
GaN			300	145	105	308	105	122.5	120	202	0.2049	0.5575	0.0559	Expt ⁴⁶
InN	-	-	100	145	121	182	105	122.5	22	130	0.2399	0.3718	0.0339	Cala ¹⁶
IIIN DoN	-	-	190 570	252	202	102	110	45	152	250	0.4237	0.1008	0.0175	Cale ⁴⁷
Do N	-	-	570	232	202	794 970	102	139	212	339	0.3133	0.4203	0.2380	Cale ⁴⁷
Re_2N	-	-	657	237	238	870 704	192	212.3	213	407	0.2770	0.5259	0.1111	Calc ⁴⁷
	-	-	210	240	244	794	198	204.5	215	401	0.2742	0.3317	0.1110	Calc ⁴⁸
Z110 7=0	-	-	210	121	105	211	43	44.5	40	144	0.5550	0.5195	0.4825	Calc ¹⁰
ZnO Zn Al	-	-	191.9	107.5	88.0	21/	38.3	42.5	= =	102	0 2722	0 5241	0.1604	Calc ¹⁰
Zr_2AI	-	-	1/8.08	85.10	53.25	180.08	57.19	46.4	22	103	0.2/33	0.5341	0.1694	$Calc^{20}$
Zr_4Al_3	-	-	218.20	40.11	57.23	213.10	/4.6	89	80	106	0.1985	0.7546	-0.3112	$Calc^{20}$
Zr_5Al_4	-	-	184./3	/6.54	48.72	192.69	30.36	54	46	101	0.3026	0.4546	0.2024	$Calc^{20}$
$ZrAl_2$	-	-	236.81	46.65	57.05	217.22	90.01	95.0	90	112	0.1836	0.8020	-0.3615	Calc ²⁰
Pd_3Zr	-	-	268	90	99	305	70	89	82	157	0.2778	0.5217	0.0955	
parahydrogen	-	-	0.334	0.13	0.056	0.408	0.104	0.102	82	157	0.2778	0.5217	0.0955	13.2K ⁴
SnO ₂	-	-	260	197	117	429	131	225	109	200	0.2703	0.5426	-0.1049	Calc ⁵⁰
SnO_2	-	-	262	177	156	449	103	207	102	212	0.2937	0.4784	0.054	Expt ³⁰
IrN_2	-	-	322	301	217	553	103	273	83	294	0.3705	0.2835	0.2419	Calc
V_2B	-	-	496	94	122	442	223	197	200	234	0.1673	0.8550	-0.4352	Calc ⁵¹
Nb ₂ B	-	-	439	89	143	361	164	145	150	221	0.2226	0.6807	-0.1743	
Ta ₂ B	-	-	475	101	154	393	173	175	165	240	0.2207	0.6864	-0.1938	
V_3B_2	-	-	551	89	132	459	215	183	202	252	0.1836	0.8021	-0.3517	
Nb_3B_2	-	-	474	92	121	449	169	135	164	229	0.2108	0.7167	-0.1983	
Ta_3B_2	-	-	506	126	141	470	204	150	182	255	0.2121	0.7125	-0.1704	Calc ⁵¹
VB_2	-	-	672	120	130	470	223	276	237	283	0.1718	0.8402	-0.4405	
NbB ₂	-	-	602	106	186	429	218	248	209	286	0.20/1	0.7279	-0.3037	
TaB ₂	-	-	596	142	196	427	190	227	190	297	0.2362	0.6402	-0.1331	Calc ⁵¹
C_4	-	-	932.6	172.1	58.5	1189.6	446.7	324.5	422	403	0.1121	1.046	-0.6708	
Sn	-	-	74.2	58	22.2	81.2	23.4	9.9	17	48	0.3388	0.3612	0.4904	
$ZrAl_3$	-	-	203.98	65.35	44.7	202.2	81.06	100.21	82	102	0.1824	0.8057	-0.3489	Calc ²⁰
Zr_5Al_3	-	-	183.2	67.59	61.27	167.57	32.65	64.61	47	101	0.2999	0.4618	0.1979	Calc ²⁰
$Pd_{11}Zr_9$	-	-	171	127	116	187	36	23	30	139	0.4003	0.2136	0.6641	Calc ⁵³
$PdZr_2$	-	-	197	86	106	149	64	47	49	126	0.3292	0.3856	0.3214	Calc ⁵³
MoSi ₂	-	-	410	114.9	87.5	514	207	200	190.7	212.1	0.1541	0.8991	-0.4823	Calc ⁵⁴
WSi ₂	-	-	442.8	121.7	81.0	552.3	211.6	217.5	203.5	222.4	0.1494	0.9151	-0.5089	Expt ⁵⁴
WSi ₂	-	-	372	116	81.6	596	211	236	197	208	0.1401	0.9471	-0.5996	Calc ⁵⁴
MoSi ₂	-	-	403.7	114.5	88.0	505.3	202.7	194.8	186.5	209.9	0.1572	0.8888	-0.4646	Expt ⁵⁴
MoSi ₂	-	-	345	109	87.7	547	190	220	178.8	197.7	0.1525	0.9046	-0.5393	Calc ⁵⁴
CrSi ₂	-	-	372.2	45.3	82.6	385.2	149.1	163.5	153	171.9	0.1563	0.8916	-0.5370	Expt ⁵⁴
CrSi ₂	-	-	372	45.3	68.3	441	146	163	157.4	171.1	0.1481	0.9195	-0.5708	Calc ⁵⁴
VSi ₂	-	-	357.8	50.6	68.1	422.3	146	153.6	152.3	167.2	0.1507	0.9108	-0.5410	Expt ⁵⁴
VSi ₂	-	-	356	50.6	67.0	430	135.7	154	148.3	167.0	0.1574	0.8800	-0.5153	Calc ⁵⁴
NbSi ₂	-	-	380.2	75.9	88.3	468	145.3	152.2	153.2	191.5	0.1843	0.7996	-0.3480	Expt ⁵⁴
NbSi ₂	-	-	380	75.9	80.4	508	144	152	155.8	191.8	0.1803	0.8124	-0.3652	Calc ⁵⁴
TaSi ₂	-	-	375	78.4	90.1	476.7	143.7	148.5	151.1	192.4	0.1887	0.7855	-0.3215	Expt ⁵⁴
TaSi ₂	-	-	375	78.4	82.1	517	142	148	153.4	192.7	0.1854	0.7962	-0.3361	Calc ⁵⁴

TABLE VI: The elastic properties (in GPa) of cubic, tetragonal and orthorhombic structure, as well as experimental results.

	C	C	C	C	C	C	C	C	C	G	D		C/P	Caughy Drassurg/D	Noto
	C ₁₁	C ₁₂	C ₁₃	C ₂₃	C ₂₂	C33	<u>C44</u>	C55	C66	0	D	V	0/0	Cauchy Flessure/B	Note
TiSi ₂	317.5	29.35	38.45	86.0	320.4	413.2	112.5	75.8	117.5	117.0	148.9	0.1887	0.7856	-0.3403	Calc ³⁴
TiSi ₂	276	29.9	33.4	93.5	302	394	119	755	134	116.2	140.9	0.1765	0.8249	-0.3944	Calc ⁵⁴
Mo(Si.Al) ₂	402.8	74.2	107.1	-	-	434.4	148.2	-	164.3	155.3	201.4	0.1932	0.7714	-0.3258	RT ⁵⁵
Mo(Si Al)	398.0	75.2	107.8	_	_	430.6	146.4	_	161 7	153.1	200.4	0 1956	0 7638	-0.3121	400K ⁵⁵
$M_{0}(S; A1)$	202.1	72.9	107.0			420.7	144.2		150.5	150.0	106.6	0.1047	0.7667	0.2171	500K55
$MO(SI,AI)_2$	392.1	75.0	105.5	-	-	420.7	144.5	-	159.5	130.8	190.0	0.1947	0.7007	-0.31/1	500K
$Mo(S1,AI)_2$	388.4	73.7	105.3	-	-	416.3	142.1	-	157.6	148.7	195.3	0.1963	0.7615	-0.3090	600K ³³
$Mo(Si,Al)_2$	384.1	73.2	105.1	-	-	410.3	140.5	-	155.6	146.8	193.5	0.1973	0.7585	-0.3044	700K ⁵⁵
Mo(Si,Al) ₂	379.8	73.4	104.3	-	-	405.9	138.6	-	153.1	144.7	191.7	0.1984	0.7549	-0.2973	800K ⁵⁵
Mo(Si Al)	375.5	73.6	106.5	_	-	403.2	136.7	-	151.2	142.5	191.4	0.2018	0.7445	-0.2815	900K ⁵⁵
$M_0(Si Al)$	371.3	73.5	106.5	_	_	308.8	135.0	_	1/0 3	140.6	180.0	0.2032	0.7401	-0.2745	10001255
$M_{-}(S; A)$	266 4	73.5	100.5	-	-	202.0	122.0	-	146.7	120.0	109.9	0.2032	0.7401	-0.27+5	110001
$MO(S1,A1)_2$	300.4	75.0	106.5	-	-	393.9	132.9	-	140.7	138.3	188.1	0.2047	0.7353	-0.2000	1100K ⁵⁵
$Mo(S1,AI)_2$	361.1	71.9	105.1	-	-	385.6	130.7	-	144.8	136.0	185.3	0.2051	0.7342	-0.2658	1200K ³³
TiO_2	646	250	229	283	475	635	148	203	246	180	362	0.2869	0.4968	0.1520	Calc ⁵⁶
ZrO_2	619	176	210	224	450	632	107	178	174	160	320	0.2858	0.4998	0.1573	Calc ⁵⁶
HfO	664	193	236	235	575	640	137	185	165	176	355	0.2873	0.4958	0.1660	Calc ⁵⁶
FaB	502	185	160	136	773	574	271	102	221	230	315	0.2075	0.7206	0.2211	Cale ⁵⁷
TeD ₂	100	165	100	150	725	J74 451	2/1	150	221	230	270	0.2000	0.7290	-0.2211	
FeB ₄	409	101	101	152	/68	451	216	154	222	189	278	0.2226	0.6807	-0.1416	Calc
VB	560	126	130	130	559	572	248	248	188	223	274	0.1800	0.8135	-0.3630	Calc ³¹
NbB	513	119	148	148	513	505	219	219	158	192	262	0.2058	0.7321	-0.2300	Calc ⁵¹
TaB	545	117	169	169	545	518	222	222	163	196	280	0.2155	0.7023	-0.1811	Calc ⁵¹
VER	616	83	134	140	634	477	224	265	234	234	270	0 1646	0 8641	-0.4513	Calc ⁵¹
Nh D	525	117	169	157	527	152	221	205	104	201	267	0.1077	0.7574	0.1515	Calo ⁵¹
INU5D6	555	11/	100	157	557	432	227	245	194	202	207	0.1977	0.7574	-0.2793	
$1a_5B_6$	552	139	167	164	563	484	227	233	194	205	282	0.2078	0./15/	-0.21/6	Calc ⁵¹
V_3B_4	475	135	135	90	636	626	235	263	229	235	272	0.1644	0.8647	-0.4501	Calc ³¹
Nb_3B_4	521	123	155	133	549	553	222	220	217	212	272	0.1899	0.7817	-0.3045	Calc ⁵¹
Ta_3B_4	531	135	167	156	559	557	209	211	214	206	285	0.2086	0.7232	-0.2061	Calc ⁵¹
V_2B_2	484	128	129	98	642	639	254	248	229	239	274	0.1621	0.8721	-0.4582	Calc ⁵¹
Nb ₂ B ₂	400	148	162	106	574	591	218	240	238	221	277	0.1851	0 7971	-0.3368	Calc ⁵¹
$T_0 B$	517	162	161	137	582	603	210	210	230	217	201	0.1001	0.7/12	0.2430	Cale ⁵¹
$1a_2D_3$	J17 411	102	101	157	502	410	211	106	233	217	291	0.2019	0.7442	-0.2439	
T1B	411	91	107	61	524	410	189	186	193	185	206	0.1552	0.8953	-0.4992	Calc ³⁰
Nb_6Sn_5	266.5	83	90.4	110.6	228.2	410	210.4	65.5	62.9	54	141	0.3304	0.3824	0.3081	Calc ¹⁸
$NbSn_2$	180.8	77.3	68.9	60.1	178.5	188.3	52.5	37.3	57.4	51	107	0.2924	0.4818	0.1847	Calc ¹⁸
ZrAl	142.87	64.66	92.6	49.26	217.32	193.33	70.28	116.67	62.22	68	107	0.2388	0.6325	-0.1331	Calc ²⁰
Zr ₂ Al ₃	226.06	46.84	48.31	67.91	203.50	203.01	74.73	76.07	56.91	72	107	0.2240	0.6766	-0.1397	Calc ²⁰
Pd Z r	169.6	108.1	134.7	126.7	230.4	229.5	70.6	67.5	16.6	42	149	0 3714	0.2813	0 4797	Calc ²¹
Ti0 25Mo0 75	363.6	151.5	151.7	120.7	250.1	227.5	62	07.5	10.0	76.0	222.2	0.3/17	0.2015	0.1727 0.4028(207)	Cale ⁵⁹
TI0.25W100.75	303.0	131.5	-	-	-	-	10.4	-	-	10.9	170.4	0.3447	0.3403	0.4026(207)	
110.5M00.5	224.0	146.6	-	-	-	-	10.4	-	-	18.2	172.4	0.4490	0.1056	0.7900(52.8)	Calc
T10.75Mo0.25	160.5	125.6	-	-	-	-	34.1	-	-	26.0	137.2	0.4107	0.1899	0.6667(73.5)	Calc ³⁹
Ti0.25Nb0.75	203.5	126.8	-	-	-	-	21.3	-	-	27.0	152.4	0.4163	0.1773	0.6924(76.5)	Calc ⁵⁹
Ti0.5Nb0.5	155.4	124.7	-	-	-	-	12.8	-	-	13.8	134.9	0.4507	0.1020	0.8293(39.9)	Calc ⁵⁹
Ti0.75Nb0.25	128.5	115.5	-	-	-	-	14.9	-	-	10.7	119.8	0.4567	0.0891	0.8395(31.1)	Calc ⁵⁹
Ti0 25Ta0 75	207.0	145.3	_	_	_	_	55.6	_	_	43.9	165.9	0 3784	0 2646	0.5408(121.0)	Calc ⁵⁹
T:0 5T-0 5	162.4	122.0	_	_	-	-	20.0	_	_	72.9	142.0	0.3704	0.2040	0.5400(121.0)	Cala ⁵⁹
TIU.3 Ta0.3	105.4	132.0	-	-	-	-	39.0	-	-	20.0	145.0	0.4110	0.10/4	0.0339(73.7)	
Ti0.75Ta0.25	129.9	121.6	-	-	-	-	38.6	-	-	16.9	124.4	0.4351	0.1357	0.6674(48.4)	Calc ⁵⁵
Ti0.25V0.75	213.0	132.2	-	-	-	-	29.6	-	-	33.5	159.1	0.4016	0.2107	0.6447(93.9)	Calc ⁵⁹
Ti0.5V0.5	169.6	122.3	-	-	-	-	33.6	-	-	29.2	138.1	0.4012	0.2114	0.6424(81.8)	Calc ⁵⁹
Ti0.75V0.25	123.9	116.9	-	-	-	-	36.3	-	-	15.4	119.2	0.4380	0.1293	0.6760(44.3)	Calc59
Ti0 25W0 75	374.8	184.2	_	_	-	_	817	_	_	86.9	247 7	0 3430	0 3508	0.4138(233.4)	Calc ⁵⁹
T:0 5W0 5	220.0	161.2					50.0			11.0	100 6	0.2010	0.2251	0.6025(124.6)	Cala ⁵⁹
TI0.5 W 0.5	239.9	105.9	-	-	-	-	50.9	-	-	44.0	190.0	0.3910	0.2551	0.0055(124.0)	
Ti0.75W0.25	169.2	134.2	-	-	-	-	32.4	-	-	25.3	145.9	0.4180	0.1735	0.6979(71.8)	Calc ⁵⁵
Zr0.25Mo0.75	342.4	134.5	-	-	-	-	49.7	-	-	67.1	203.8	0.3516	0.3293	0.4161(181.4)	Calc ⁵⁹
Zr0.5Mo0.5	208.5	124.3	-	-	-	-	29.2	-	-	33.8	152.4	0.3967	0.2220	0.6242(94.5)	Calc ⁵⁹
Zr0.75Mo0.25	138.4	104.2	-	-	-	-	16.6	-	-	16.8	137.2	0.4307	0.1453	0.7578(48.1)	Calc59
Zr0 25Nb0 75	196.2	118 5	_	_	_	_	179	_	_	24.6	144 4	0.4195	0 1700	0.6967(69.7)	Calc ⁵⁹
Z=0.5Nb0.5	144.4	100.0					10.2			10 2	120.2	0.4290	0.1512	0.0007(00.1)	Cala ⁵⁹
ZIU.JINUU.J	144.4	108.5	-	-	-	-	10.5	-	-	10.2	120.5	0.4200	0.1312	0.7479(32.0)	
Zr0./5Nb0.25	112.8	98.3	-	-	-	-	19.8	-	-	13.2	103.1	0.4384	0.1284	0.7612(38.1)	Calc
Ag	120.5	92.0	-	-	-	-	44.6	-	-	28	101.5	0.3726	0.2785	0.4670	400K ⁶⁰
Ag	117.0	90.0	-	-	-	-	42.6	-	-	26	99	0.3753	0.2719	0.4788	500K ⁶⁰
Ag	113.5	88.0	-	-	-	-	40.7	-	-	25.6	96.5	0.3781	0.2653	0.4902	600K ⁶⁰
Aø	110.0	86.0	-	-	-	-	38.8	-	_	24	94	0.3811	0.2584	0.5021	700K ⁶⁰
Δσ	106.5	84 5	_	_	_	_	36.0	_	_	227	91.8	0 3855	0.2480	0 5183	800K ₆₀
115	100.5	160 5	-	-	-	-	JU.9 41 0	-	-	22.1	100.0	0.3033	0.1500	0.5105	4001×60
Au	107	100.5	-	-	-	-	41.0	-	-	20.8	199.9	0.4250	0.1580	0.7029	400K ⁶⁰
Au	185	158	-	-	-	-	39.7	-	-	25.8	167	0.4266	0.1544	0.7084	500K00
Au	182	155.5	-	-	-	-	38.3	-	-	25.0	164.3	0.4275	0.1524	0.7132	600K ⁶⁰
Au	178.5	153	-	-	-	-	36.9	-	-	24.1	161.5	0.4289	0.1493	0.7189	700K ⁶⁰
Au	175.5	150.5	-	-	-	-	35.5	-	-	23.4	158.8	0.4299	0.1472	0.7240	$800K^{60}$

TABLE VII: The elastic properties (in GPa) of actinide and lanthanide intermetallic compounds, as well as experimental results.

	C ₁₁	C ₁₂	C ₁₃	C ₂₃	C ₂₂	C ₃₃	C ₄₄	C ₅₅	C ₆₆	G	В	ν	G/B	Cauchy Pressure/B	Note
Pu-1at%Ga	36.28	26.73	-	-	-	-	33.59	-	-	22.1	29.9	0.2039	0.7378	-0.2293	Expt ⁶¹
α-U	215	46	22	108	199	267	124	73	74	84	113	0.2019	0.7441	-0.2799	Expt ⁶²
α-U	299	59	30	144	231	364	100	150	132	114	149	0.1933	0.7711	0.3343	Calc ⁶²
<i>β</i> -U	220	107	79	-	-	201	65	-	36	57	130	0.3090	0.4378	0.3271	Calc ⁶²
α -UH ₃	217	37	-	-	-	-	65	-	-	74	97	0.1957	0.7635	-0.2887	0GPa ⁶³
α -UH ₃	240	42	-	-	-	-	70	-	-	80	108	0.2016	0.7449	-0.2593	5GPa ⁶³
α -UH ₃	260	45	-	-	-	-	66	-	-	80	117	0.2200	0.6885	-0.1800	10GPa ⁶³
α -UH ₃	274	46	-	-	-	-	60	-	-	78	122	0.2370	0.6378	-0.1148	15GPa ⁶³
α -UH ₂	297	61	-	-	-	_	60	-	-	79	140	0.2622	0.5652	-0.0072	20GPa ⁶³
α -UH ₂	213	50	-	-	-	_	48	-	-	59	104	0.2607	0.5695	-0.0192	GGA ⁶⁴
α -UH ₂	216	57	_	_	_	-	50	-	-	60	110	0.2684	0.5478	0.0636	LDA ⁶⁴
α -UH ₂	221	63	_	_	_	-	53	-	-	62	116	0.2719	0.5379	0.0865	LDA+U ⁶⁴
B-UH ₂	201	92	_	_	_	-	57	-	-	56	128	0.3096	0.4363	0.2727	LDA ⁶⁴
B-UH	201	70	_	_	_	_	58	-	_	65	121	0.2727	0.5356	0.0994	LDA+U ⁶⁴
B-UH	222	102	_	_	_	_	60	-	_	61	144	0.3141	0.2225	0.2923	GGA ⁶⁴
UN	423.9	98.1	_	_	_	_	75.7	_	_	103	207	0.2855	0.1213	0.1084	Exnt ⁶⁵
	381	113	_	_	_	_	54.6	_	_	79	207	0.2000	0.3004	0.1004	AFM-SOC ⁶⁶
UN.	405 A	137.3	-	-	-	-	54.0 65.6	-	-	00	257	0.3275	0.3902	0.2000	GG 167
	493.4	137.5	-	-	-	-	55.3	-	-	22 80	257	0.3283	0.3074	0.2793	$GGA + U2^{67}$
	400.2	140.5	-	-	-	-	41.2	-	-	76	250	0.3430	0.3480	0.3438	$CCA + U4^{67}$
	403.0	140.2	-	-	-	-	41.5	-	-	/0	200	0.3007	0.2927	0.4034	GGA+04
UO_2	269.5	110./	-	-	-	-	39.7	-	-	00	209	0.3238	0.3993	0.2824	Expt ¹
UO_2	309.4	112.5	-	-	-	-	01.7	-	-	83	198	0.3139	0.4190	0.2304	GGA
UO_2	343.1	121.3	-	-	-	-	62.7	-	-	/9	195	0.3218	0.4043	0.3001	GGA+U ⁰⁰
UO_2	440.6	141.3	-	-	-	-	88.1	-	-	109	241	0.3034	0.4525	0.2207	LDA ⁰⁰
UO_2	382.3	136.5	-	-	-	-	64.5	-	-	84	218	0.3300	0.3834	0.3269	LDA+U ⁰⁸
UO_2	386.4	118.0	-	-	-	-	63.9	-	-	86.4	207	0.3171	0.4166	0.2608	R109
UO_2	317.9	118.3	-	-	-	-	59.8	-	-	73.5	184.8	0.3244	0.3977	0.3165	1200K ⁶⁹
UO_2	253.9	96.2	-	-	-	-	49.6	-	-	59.8	148.8	0.3228	0.4018	0.3132	2060K ⁶⁹
UO_2	233.3	80.4	-	-	-	-	48.2	-	-	58.0	131.4	0.3075	0.4417	0.2451	2250K ⁶⁹
UO_2	219.5	90.7	-	-	-	-	43.0	-	-	50.6	133.6	0.3320	0.3785	0.3569	2370K ⁶⁹
UO_2	217.3	97.2	-	-	-	-	43.0	-	-	49.2	137.2	0.3399	0.3583	0.3949	2460K ⁶⁹
UO_2	212.8	92.6	-	-	-	-	40.7	-	-	47.6	132.7	0.3398	0.3588	0.3912	2580K ⁶⁹
UO_2	196.7	94.5	-	-	-	-	36.4	-	-	41.7	128.6	0.3536	0.3244	0.4519	2670K ⁶⁹
UO_2	178.3	93.6	-	-	-	-	32.7	-	-	36.3	121.8	0.3646	0.2977	0.4999	2760K ⁶⁹
UO_2	146.1	78.7	-	-	-	-	27.5	-	-	29.8	88.5	0.3485	0.3371	0.5786	2930K ⁶⁹
UC	315	77	-	-	-	-	61	-	-	80	156	0.2815	0.5116	0.1023	Expt ⁷⁰
UC	315	136	-	-	-	-	72	-	-	79	196	0.3230	0.4015	0.3271	GGA+U3 ⁷⁰
UC_2	292	154	58	-	-	512	46	-	143	87	180	0.2927	0.4812	0.0637	GGA+U3 ⁷¹
U_2C_3	383	121	-	-	-	-	91	-	-	105	208	0.2837	0.5056	0.1440	GGA+U3 ⁷¹
UB_2	450.4	58.6	102.3	-	-	497.2	262.6	-	195.9	217	213	0.1197	1.0188	-0.6986	This work
UB_4	558.4	118.9	80.9	-	-	569.1	223	-	226.4	228	250	0.1500	0.9130	-0.4998	This work
UB_{12}	488.9	118.1	-	-	-	-	254.1	-	-	224	242	0.1460	0.9267	-0.5628	This work(0GPa)
UB_{12}	673.1	212.2	-	-	-	-	329.3	-	-	285	366	0.1904	0.7802	-0.3201	This work(50GPa)
UB_{12}	807.8	295.1	-	-	-	-	392.1	-	-	331	466	0.2131	0.7096	-0.2081	This work(100GPa)
U_2Ti	293.6	81	28.2	-	-	310	133.9	-	106.3	124	130	0.1375	0.9562	-0.5037	This work
U_2Ti	285	74	28	-	-	300	129	-	105.5	121	125	0.1346	0.9661	-0.5282	Calc ⁷²
U ₂ Ti	295.1	89.4	30.1	-	-	310.8	128	-	102.9	120	133	0.1520	0.9063	-0.4182	Calc ⁷²
U ₂ Ti	464.3	189.3	71.4	-	-	489.3	167.9	-	137.5	164	231	0.2121	0.7125	0.0969	20GPa ⁷²
U ₂ Ti	603.6	285.7	117.9	-	-	657.1	200	-	159.0	197	322	0.2465	0.6101	0.0692	40GPa ⁷²
U ₂ Ti	664.3	332.1	139.3	-	-	732.1	214.3	-	166.1	210	364	0.2583	0.5764	0.1251	50GPa ⁷²
U ₂ Ti	928.6	571.4	246.4	-	-	1150	128	-	178.6	195	570	0.3468	0.3412	0.4483	100GPa ⁷²
NpN	402	140	-	-	-	_	38.4	-	_	64	227	0.3704	0.2837	0.4469	NM ⁶⁶
NnN	331	54.2	_	_	_	-	79.1	-	-	99	140	0.2129	0.7100	0.1783	FM ⁶⁶
NnN	341	97.7	_	_	_	-	60.8	-	-	81	170	0.2957	0.4731	0.2167	AFM ⁶⁶
NnN	359	112	_	_	_	-	50.4	-	-	73	194	0 3334	0 3748	0.3170	NM-SOC ⁶⁶
NnN	330	86.4	_	_	_	_	60.7	-	_	81	168	0.2929	0.4805	0.1533	FM-SOC ⁶⁶
NnN	330	94.2	_	_	_	_	61.8	_	_	82	176	0.2921	0.4639	0.1843	AFM-SOC ⁶⁶
PuN	280	89.6					66.2		_	7/	1/0	0.2991	0.5013	0.1596	AFM-SOC ⁶⁶
Ce	280	17	-	-	-	-	15	-	-	11.2	21	0.2052	0.5015	0.1590	Cale ⁷³
Ce	20	26.4	-	-	-	-	20.0	-	-	11.2	20.2	0.2703	0.3419	0.0908	Cale ⁷³
	51.9 01	∠0.4 50	-	-	-	-	20.9 27	-	-	14.0	50.2	0.2091	0.4908	0.1019	Calc ⁷³
$CeH_2 - CaF_2$	84 07 (52 55	-	-	-	-	27	-	-	21.9	02.7	0.3436	0.3493	0.3989	
$CeH_2 - CaF_2$	ð/.0	22	-	-	-	-	5/	-	-	20.0	03.9	0.3219	0.4043	0.2733	Expt ⁷³
$CeH_2 - FeS_2$	118	31	-	-	-	-	33	-	-	30.9	51.0	0.2450	0.0144	-0.0555	$Calc'^3$
$CeH_2 - AIB_2$	90	21	53	-	-	51.55	33	-	-	23.6	51.0	0.2992	0.4635	0.1128	
$CeH_2 - ReB_2$	114	41	18	-	-	56.11	12	-	-	50.4	56.0	0.2705	0.5418	0.0937	Calc ⁷³
$CeH_3 - BiF_3$	96	35	-	-	-	-	19	-	-	23.0	55.3	0.3175	0.4154	0.2892	Calc' ³
CeH_3 -ReO ₃	71	49	-	-	-	-	9	-	-	9.8	56.3	0.4181	0.1731	0.7101	Cale's
$CeH_3 - P-3C1$	89	20.8	21	-	-	104	23	-	-	30.6	45.2	0.2289	0.6619	-0.1693	Calc ¹³

	C ₁₁	C ₁₂	C ₁₃	C ₂₃	C ₂₂	C ₃₃	C ₄₄	C55	C ₆₆	G	В	ν	G/B	Cauchy Pressure/B	Note
ZrB ₁₂	443	129	-	-	-	-	265	-	-	215	234	0.1482	0.9193	-0.5820	Expt ⁷⁴
ZrB_{12}	437.9	146.3	-	-	-	-	256.2	-	-	204	244	0.1721	0.8392	-0.4513	0GPa ⁷⁴
ZrB_{12}	483.6	174.8	-	-	-	-	275	-	-	218	278	0.1888	0.7855	-0.3608	10Gpa ⁷⁴
ZrB_{12}	527.6	203.6	-	-	-	-	291.4	-	-	230	312	0.2036	0.7389	-0.2818	20GPaCalc ⁷⁴
ZrB_{12}	611.5	322.1	-	-	-	-	258.8	-	-	253	376	0.2255	0.6720	-0.1682	40GPaCalc ⁷⁴
ZrB_{12}	651.7	285.0	-	-	-	-	335.3	-	-	263	407	0.2341	0.6462	-0.1235	50GPaCalc ⁷⁴
HfB_{12}	436.4	156.1	-	-	-	-	250.8	-	-	199	250	0.1855	0.7958	-0.3795	0GPaCalc ⁷⁴
HfB_{12}	483.1	185.8	-	-	-	-	267.6	-	-	211	285	0.2026	0.7419	-0.2871	10GPaCalc ⁷⁴
HfB_{12}	530.1	213.9	-	-	-	-	285.1	-	-	225	315	0.2146	0.7048	-0.2230	20GPaCalc ⁷⁴
HfB_{12}	618.5	270.4	-	-	-	-	315.4	-	-	248	386	0.2353	0.6430	-0.1164	40GPaCalc ⁷⁴
HfB_{12}	661.4	296.4	-	-	-	-	328.1	-	-	259	418	0.2430	0.6202	-0.0758	50GPaCalc ⁷⁴
LuB_{12}	460.4	114.7	-	-	-	-	248	-	-	215	230	0.1441	0.9333	-0.5797	0GPaCalc ⁷⁴
LuB_{12}	504.8	138.4	-	-	-	-	268.5	-	-	230	261	0.1585	0.8842	-0.4994	10GPaCalc ⁷⁴
LuB_{12}	554.3	167.0	-	-	-	-	284.4	-	-	244	296	0.1770	0.8234	-0.3965	20GPaCalc ⁷⁴
LuB_{12}	638.9	219.0	-	-	-	-	316	-	-	268	359	0.2009	0.7472	-0.2702	40GPaCalc ⁷⁴
LuB_{12}	679.3	243.1	-	-	-	-	328.1	-	-	279	389	0.2107	0.7170	-0.2188	50GPaCalc ⁷⁴
YB_{12}	464.3	107.4	-	-	-	-	252	-	-	219	226	0.1337	0.9695	-0.6388	0GPaCalc ⁷⁴
YB_{12}	513.1	135.2	-	-	-	-	270.4	-	-	234	266	0.1600	0.8792	-0.5075	10GPaCalc74
YB_{12}^{12}	559.3	161.5	-	-	-	-	287.8	-	-	248	294	0.1707	0.8439	-0.4294	20GPaCalc ⁷⁴
YB_{12}	646	214.5	-	-	-	_	287.8	-	-	272	358	0.1972	0.7587	-0.2869	40GPaCalc ⁷⁴
YB_{12}	686.9	241.1	-	-	-	_	330.9	-	-	282	390	0.2081	0.7247	-0.2304	50GPaCalc ⁷⁴
γ -TiAl	186.6	75.0	75.0	-	-	182.9	108.8	_	81.2	78.3	111.8	0.2162	0.7001	-0.1789	0K ⁷⁵
γ -TiAl	182.8	75.2	75.0	-	-	176.9	103.5	-	81.2	74.5	110.3	0.2243	0.6756	-0.1351	298K ⁷⁵
γ -TiAl	179.7	75.3	75.3	-	-	173.7	100.5	-	74.4	72.3	109.4	0.2293	0.6608	-0.1110	443K ⁷⁵
γ -TiAl	178.0	75.6	75.5	-	-	172.1	99.0	-	73 3	71.1	109.0	0.2321	0.6523	-0.0972	523K ⁷⁵
γ -TiAl	172.5	75.2	75.7	-	-	167.3	94.8	-	70.6	67.9	107.3	0.2387	0.6329	-0.0676	723K ⁷⁵
γ -TiAl	150.3	76.0	76.0	_	_	152.6	81.6	-	63.8	56.9	107.5	0.2507	0.5638	0.0327	1273K ⁷⁵
S-ZnO	189.8	102.2	93.7	_	_	192.0	45.2	-	43.8	46.0	128.7	0.2027	0.3576	0.4155	
S-ZnO	190	110	90	_	_	196	30	_	40	42.3	120.7	0.3516	0.3293	0.4713	Expt ⁷⁶
V ⁰ -1	182.0	96.8	827	_	_	192.8	44 5	-	42.6	45.7	120.1	0.3311	0.3200	0.3846	Calc ⁷⁶
$V^{+2}-1$	180.7	112.1	97.5	_	_	192.0	35.9	-	34.3	37.4	120.1	0.3686	0.2879	0.5371	Calc ⁷⁶
V_0^{0}	169.7	88.0	873	_	_	163.5	38.3	_	40.6	39.4	114 1	0.3452	0.5638	0.4224	Calc ⁷⁶
P_0^2	682	188	131	_	_	1118	290	_	247	294.1	369.6	0.1855	0.7958	-0 2949	Calc ⁷⁷
0.32B.	629	167	135	_	_	1006	256	_	231	269.4	342.8	0.1887	0.7950	-0 2844	Calc ⁷⁷
0.52By	596	167	182	_	_	922	200	_	214	236.0	346.0	0.1007	0.6821	-0.1329	Calc ⁷⁷
$1.30B_V$	543	170	226	_	_	667	195	_	186	190.2	329.9	0.2582	0.5766	0.0227	Calc ⁷⁷
HA	137.2	44 5	57.8	_	_	164.8	42.3	_	46 35	44 7	83.7	0.2502	0.5700	0.0227	Calc ⁷⁸
НΔ	137	42.5	54.9	_	_	172	39.6	_	47 25	44.6	82.6	0.2731	0.5397	0.0639	Expt ⁷⁸
$HA-V_{H}$	129.0	27.6	69.5	_	_	158.6	47.8	-	50.7	44.8	80.4	0.2713	0.5578	-0.0087	Calc ⁷⁸
H_{A}	113.7	43.5	47 1	_	_	163.9	30.0	_	35.1	39.5	72.9	0.2010	0.5370	0.1069	Calc ⁷⁸
HA-Vou	109.0	28.4	62.7	-	-	160.1	42.1	-	40.3	39.2	72.3	0.2701	0.5429	0.0602	Calc ⁷⁸
$HA-V^{2+}$	116.2	53.4	40.7	-	-	156.0	31.7	-	31.4	35.1	72.9	0.2925	0.4816	0.2128	Calc ⁷⁸
HA- V^{2+}	77.0	21.9	70.4	-	-	1191	34.1	-	27 55	26.5	66.5	0.3241	0 3984	0.4609	Calc ⁷⁸
Ni Ca2	246 58	147.24	-	_	_	-	124.97	_	-	94.85	180.35	0.2763	0.5259	0.1235	MD ⁷⁹
Ni_1at%H	246.50	148.04	_	_	_	_	127.57	_	_	93.28	180.95	0.2703	0.5255	0.1200	MD ⁷⁹
Ni_2at%H	246.93	148.81	_	_	_	_	122.50		_	91 74	181.52	0.2800	0.5155	0.1576	MD ⁷⁹
Ni-3at%H	240.93	140.01	_	_	_	_	117.83		_	90.21	182.09	0.2027	0.3002	0.1743	MD ⁷⁹
Ni_Aat%H	247.13	150.34					115.46			88.67	182.67	0.2074	0.4954	0.1745	MD ⁷⁹
Ni-5at%H	247.55	151.1	_	-	-	-	113.40	-	-	87.15	182.07	0.2911	0.4054	0.1909	MD ⁷⁹
	277.55	101	- 98.9	-	-	105	65	_	-	56.5	130.24	0.2247	0.5011	0.2074	Expt ⁸⁰
RaTiO	233	107	11/	-	-	160	56.2	-	104	58.2	130.2	0.2055	0.3011	0.1202	Expt Expt ⁸⁰
	176 1	86.9	68 3	-	-	190 5	50.2 50.8	-	44.6	50.2	100 0	0.3132	0.4562	0.1370	4K ⁸¹
Ti	162 /	92 N	60.J	-	-	180.7	26.0 26.7	_	35.0	13 A	107.3	0.3020	0.4042	0.2687	208K ⁸¹
Ti	152.4	92.0	60 5	-	-	172 /	43.7	-	28.5 28.5	79.4 38 7	107.3	0.3219	0.4042	0.3007	273K ⁸¹
Ti	120.0	00.7	68.9	-	-	157.4	73. 1 32.7	-	20.J	26.1	08.0	0.3373	0.3044	0.5145	073K ⁸¹
Ti	129.9 07 7	99.2 87 7	00.0	-	-	157.0	37.5	-	25.4	20.1 87 7	137.0	0.3700	0.2057	0.5154	1273 K ⁸²
11	//./	04.1	-	-	-	-	J1)	-	<u></u>		1.77.7	V	1.4700	V/	$i \leftarrow i \downarrow i \downarrow i \downarrow$

TABLE VIII: The elastic properties (in GPa) of some intermetallic compounds under the pressure and temperature, as well as experimental results.

TABLE IX: The elastic properties (in GPa) of potential structural materials for nuclear reactors, as well as experimental results.

	C ₁₁	C ₁₂	C ₁₃	C ₃₃	C ₄₄	C ₆₆	G	В	ν	G/B	Cauchy Pressure/B	Note
ZrC	470	100			160	-	170	223	0.1970	0.7593	-0.2687	Expt ⁸³
SiC	390	142			256	-	191	225	0.1683	0.8518	-0.5074	Expt ¹⁴
SiC	420	126			287	-	219	224	0.1308	0.9795	-0.7188	Expt ¹³
T ₁₂ SC	-	-	-	-	-	-	125	145	0.16	-	-	Expt ^{o+}
α -11 ₃ S1C ₂	360	84 86	101	330 249	158	1380	142	182	0.1910	0.7762	-0.3054	FLAPW ⁰⁵
$p = 11_3 \text{ SIC}_2$ Fe=19Cr=10Ni	204.6	137.7	- 09	540	126.2	1370	801	160	0.2077	0.7202	-0.2312	Expt ⁸⁶
Fe-12Cr-12Ni	210.9	140.3	-	-	120.2	-	88	164	0.2032	0.5349	0.1086	Expt ⁸⁶
Fe-12Cr-18Ni	233.2	162.7	_	-	122.5	_	88	168	0.2750	0.5549	0.2153	Expt ⁸⁶
Fe-18Cr-8Ni	209	133.0	-	-	121	-	88	153	0.2595	0.5727	0.0758	Expt ⁸⁷
Fe-18Cr-12Ni	191.2	117.9	-	-	138.6	-	98	142	0.2204	0.6874	-0.1454	Expt ⁸⁶
Fe-18Cr-12Ni	215.9	144.6	-	-	128.9	-	89.1	160	0.2652	0.5569	0.0719	Expt ⁸⁶
Fe-18Cr-14Ni	198	125	-	-	122	-	88	149.3	0.2542	0.5881	0.0201	Expt ⁸⁶
Fe-18Cr-19Ni	191	119	-	-	124	-	89	143	0.2428	0.6210	-0.0350	Expt ⁸⁶
Fe-19Cr-10Ni	207	132	-	-	123	-	89.1	157	0.2621	0.5656	0.0573	Expt ⁸⁶
Fe-19Cr-14Ni	205	133	-	-	127	-	91	157	0.2580	0.5771	0.0382	Expt ⁸⁶
Fe-19Cr-19Ni	204	133	-	-	126	-	89	156.7	0.2594	0.5731	0.0447	Expt ⁸⁶
Fe-19Cr-24Ni	215.2	144.0	-	-	125.8	-	90	168	0.2730	0.5350	0.1085	Expt ⁸⁷
Fe	276	173.5	-	-	136.3	-	102	208	0.2885	0.4924	0.1719	Expt ^{oo}
Co	239.8	163.4	-	-	133.4	-	95	189	0.2841	0.5045	0.1588	Expt ⁸⁶
INI Ea 15Cr 15Ni	251.0	134.4	-	-	122.0	-	93	167	0.28/3	0.4957	0.1/34	Expl ⁰⁰
Fe-15Cr-15Ni	213.0	137	-	-	130	-	97.2	163	0.2515	0.5905	0.0001	200K ⁸⁷
Fe-15Cr-15Ni	214.9	137	-	-	134	-	90.0	163	0.2520	0.5920	0.0123	200K 220K ⁸⁷
Fe-15Cr-15Ni	214.7	137	_	-	133	_	95.3	162.8	0.2551	0.5005	0.0104	220K 230K ⁸⁷
Fe-15Cr-15Ni	213.1	137	_	-	133	-	95.0	162.4	0.2552	0.5853	0.0246	240K ⁸⁷
Fe-15Cr-15Ni	213.2	137	-	-	132	-	94.4	162.4	0.2565	0.5813	0.0308	250K ⁸⁷
Fe-15Cr-15Ni	212.6	137	-	-	132	-	94.3	162.2	0.2565	0.5814	0.0308	260K ⁸⁷
Fe-15Cr-15Ni	212.1	137	-	-	132	-	94.2	162.0	0.2565	0.5815	0.0309	270K ⁸⁷
Fe-15Cr-15Ni	211.8	137	-	-	131	-	93.6	161.9	0.2576	0.5781	0.0371	280K ⁸⁷
Fe-15Cr-15Ni	211.4	137	-	-	131	-	93.5	161.8	0.2577	0.5797	0.0371	290K ⁸⁷
Fe-15Cr-15Ni	211	137	-	-	130	-	93	162	0.2591	0.5739	0.0433	295K ⁸⁷
Ti ₂ AlB	196.4	87.1	58.0	209.0	75.3	54.7	67	112	0.2512	0.5963	0.0674	PAW ⁸⁸
Zr ₂ AlB	176.7	70.0	51.4	175.7	52.0	53.4	55	97	0.2617	0.5667	0.0824	PAW ⁸⁸
Hf_2AIB	203.8	76.5	58.5	200	67.5	63.7	67	110	0.2469	0.6990	0.0172	PAW ⁰⁰
V_2 AIB	285.1	85./	9/./	2/8.5	138.8	99.7	101	15/	0.2127	0./108	-0.1/5/	PAW ⁶⁶ DAW ⁸⁸
	205.0	91.4	101.7	249.2	123.5	90.1 114 A	101	175	0.2400	0.0280	-0.0003	PAW ⁸⁸
$Cr_2 AlB$	208.8	90.8 81.9	129.8	270.2	140.0	108.5	121	174	0.2249	0.6954	-0.1293	$P\Delta W^{88}$
MonAlB	316.6	105.4	1517	269.0	161.1	105.5	118	191	0.2438	0.6199	-0.0251	PAW ⁸⁸
Sc ₂ AlC	179.2	65.3	34.2	194.5	45.2	57.0	56	91	0.2447	0.6154	-0.0148	PAW ⁸⁸
Ti ₂ AlC	304.4	65.4	64.0	269.9	105.7	119.5	112	140	0.1857	0.7953	-0.3412	PAW ⁸⁸
Zr_2AlC	259.2	64.7	63.3	225.3	85.0	97.3	90	125	0.2093	0.7212	-0.2174	PAW ⁸⁸
Hf ₂ AlC	291.1	74.5	72.2	255.0	99.2	108.3	102	141	0.2083	0.7243	-0.2150	PAW ⁸⁸
V ₂ AlC	330.2	74.3	107.1	321.1	149.3	128.0	130	173	0.1991	0.7529	-0.2771	PAW ⁸⁸
Nb ₂ AlC	318.9	89.4	120.8	296.5	141.2	114.8	118	177	0.2282	0.6639	-0.1291	PAW ⁸⁸
Ta ₂ AlC	349.0	125.3	132.2	338.2	153.3	111.9	125	202	0.2432	0.6197	-0.0191	PAW ⁸⁸
Cr_2AlC	369.8	86.1	108.7	362.5	142.9	141.9	139	190	0.2065	0.7298	-0.2370	PAW ⁸⁸
Mo ₂ AIC	354.4	98.0	146.6	359.0	144.4	128.2	127	205	0.2431	0.6199	-0.0683	PAW ⁶⁶
Sc_2AIN	210.3	69.6	54.0	217.7	/0.9	/0.4	/3	110	0.2291	0.6613	-0.0802	PAW ⁸⁸
$T_{12}AIN$	310.2 269.9	09.7	94.7	291.5	127.9	123.3	120	11/2	0.2012	0.7401	-0.2709	PAW ³⁰ DAW ⁸⁸
Hf. AIN	200.0	70.9 84 5	07.2 103.1	245.5	109.1	90.0	90	163	0.2213	0.0842	-0.3034	PAW ⁸⁸
VaAIN	301.7	44.8	131.4	331.7	143.1	128.5	121	169	0.2229	0.7175	-0.2820	PAW ⁸⁸
Nb ₂ AlN	340.4	149.9	110.6	332.3	147.7	95.3	119	195	0.2468	0.6095	0.0449	PAW ⁸⁸
Ta ₂ AlN	351.9	174.1	142.8	372.5	160.0	88.9	119	222	0.2727	0.5359	0.1533	PAW ⁸⁸
Cr_2AlN	286.7	74.9	144.5	376.7	88.2	105.9	95	181	0.2764	0.5256	0.0599	PAW ⁸⁸
Ti ₃ AlC ₂	368	81	76	313	130	143	135	168	0.1833	0.8029	-0.3456	PAW ⁸⁹
Zr_3AlC_2	322	73	75	270	106	124	113	151	0.2003	0.7490	-0.3385	PAW ⁸⁹
Hf_3AlC_2	357	82	83	283	126	138	127	165	0.1930	0.7722	-0.3000	PAW ⁸⁹
V_3AlC_2	415	88	113	361	163	163	156	202	0.1936	0.7701	-0.3094	PAW ⁸⁹
Nb ₃ AlC ₂	331	131	126	321	137	100	113	194	0.2556	0.5839	0.0515	PAW ⁸⁹
Ta_3AlC_2	417	118	187	351	177	150	147	241	0.2466	0.6099	-0.0456	PAW ⁸⁹
Cr_3AlC_2	381	100	136	381	118	141	117	209	0.2649	0.5582	0.0258	PAW ⁸⁹
Mo_3AlC_2	370	159	140	361	121	105	113	220	0.2800	0.5155	0.1661	PAW ⁸⁹
W_3AIC_2	392 246	181	1/7	389 250	121	106	112	249 196	0.3047	0.4490	0.2628	PAW °7
$T_3 SIC_2$	300 357	94 04	07	332 322	133	130	141 122	100	0.19/0	0.7374	-0.2337	GGA ⁹⁰
$Ti_3 OC_2$	346	94 Q2	27 8∆	313	143	132	133	162	0.2048	0.7330	-0.2250	GG^{490}
Ti ₂ GeC	279	99	95	283	125	90	104	158	0.2306	0.6569	-0.0666	LDA ⁹¹

TABLE X: The elastic properties (in GPa) of potential structural materials for nuclear reactors, as well as experimental results(continued).

	C ₁₁	C ₁₂	C_{13}	C ₃₃	C_{44}	C ₆₆	G	В	ν	G/B	Cauchy Pressure/B	Note
V ₂ GeC	282	121	144	259	160	80.5	108	182	0.2532	0.5908	0.0672	LDA ⁹¹
Cr ₂ GeC	315	148	146	354	89	83.5	88	207	0.3130	0.4273	0.2937	LDA ⁹¹
Zr ₂ GeC	224	105	108	243	99	59.5	74	148	0.2856	0.5004	0.1842	LDA ⁹¹
Nb ₂ GeC	308	133	168	306	177	87.5	119	206	0.2590	0.5744	0.0884	LDA ⁹¹
Mo ₂ GeC	331	136	184	342	123	97.5	100	223	0.3052	0.4478	0.2235	LDA ⁹¹
Hf ₂ GeC	269	96	125	278	128	86.5	97	167	0.2568	0.5804	0.0194	LDA ⁹¹
Ta ₂ GeC	370	147	194	389	220	111.5	149.9	243.4	0.2445	0.6161	0.0195	LDA ⁹¹
W ₂ GeC	340	146	222	368	117	97.0	96.7	244	0.3963	0.3250	0.3156	LDA^{91}
Ti-GaC	314	66	50	272	122	124	121	1/1	0.3703	0.8627	-0.4306	LDA^{92}
$I_2 GaC$	374	88	135	310	1/0	1/1 5	121	107	0.1050	0.6704	-0.4500	LDA LDA^{92}
$T_2 C_2 C_2$	420	101	135	222	149	141.5	152	217	0.2200	0.0704	-0.1713	LDA 1 DA ⁹²
$1a_2 \text{OaC}$	420	101	140	212	1/5	139.5	120	217 101	0.2100	0.0929	-0.2013	
V ₂ GaC	343	0/	124	312	157	138	133	181	0.2044	0.7362	-0.2877	LDA^{-1}
V	232.4	119.36	-	-	45.95	-	50	157	0.3563	0.31/9	0.4675	$4.2K^{93}$
V	227.95	118.75	-	-	42.55	-	47	155	0.3624	0.3031	0.4911	300K ³³
Ta	267.95	162.4	-	-	86.75	-	71	198	0.3394	0.3597	0.3829	4.2K ⁹⁴
Та	266.86	162.17	-	-	85.49	-	70	197	0.3407	0.3563	0.3891	100K ⁹⁴
Ta	264.82	161.29	-	-	83.32	-	69	195.8	0.3426	0.3516	0.3982	$200K^{94}$
Та	262.77	160.88	-	-	81.44	-	67	194.8	0.3448	0.3463	0.4077	300K ⁹⁴
Ta90W10	287.98	162.11	-	-	87.21	-	76.5	204	0.3333	0.3750	0.3670	$4.2K^{94}$
Ta90W10	286.78	161.98	-	-	86.28	-	75.8	203.6	0.3344	0.3722	0.3718	100K ⁹⁴
Ta90W10	284.73	161.73	-	-	84.68	-	74.5	202.7	0.3363	0.3675	0.3801	200K ⁹⁴
Ta90W10	282.51	161.24	-	-	83.15	-	73.3	201.7	0.3380	0.3633	0.3872	300K ⁹⁴
Ta70W30	325.95	173.26	-	-	87.31	-	82.7	224.1	0.3357	0.3691	0.3834	$4.2K^{94}$
Ta70W30	325.10	172.67	-	-	86.93	-	82.5	223.5	0.3357	0.3690	0.3837	100K ⁹⁴
Ta70W30	323.12	171.60	_	_	86.23	-	81.9	222.1	0 3359	0.3686	0 3844	200K ⁹⁴
Ta70W30	321.13	170.42	_	_	85 56	_	81.3	222.1	0.3359	0.3685	0.3846	300K ⁹⁴
Ta50W50	371 14	185.65	_	_	86 72	_	89.1	247.5	0.3393	0.3599	0.3007	$4.2 K^{94}$
Ta50W50	370.38	185.10			87.07		80.2	247.5	0.3397	0.3577	0.3074	1.2K 100K ⁹⁴
Ta50W50	268 50	103.19	-	-	87.07	-	89.2	240.9	0.3367	0.3014	0.3974	200K94
Ta50W50	266.59	103.03	-	-	07.49	-	09.4	243.4	0.3370	0.3043	0.3920	200K ⁹
Ta50W50	424.65	102.23	-	-	00.05	-	09.7	245.7	0.3301	0.3079	0.3800	500K
1a55W07	434.03	191.29	-	-	114.43	-	117.5	272.4	0.3118	0.4305	0.2821	4.2K ²
Ta33W6/	433.50	191.13	-	-	114.30	-	11/.0	2/1.9	0.3118	0.4303	0.2825	100K ⁹⁴
Ta33W67	430.52	190.88	-	-	114.05	-	116.3	270.8	0.3121	0.4296	0.2838	200K ⁵⁴
Ta33W67	426.86	189.97	-	-	113.84	-	115.7	268.9	0.3119	0.4300	0.2831	300K ⁹⁴
Ta17W83	481.68	196.41	-	-	139.32	-	140.6	291.5	0.2922	0.4825	0.1958	$4.2K^{94}$
Ta17W83	480.49	196.21	-	-	139.07	-	140.3	290.9	0.2923	0.4821	0.1964	$100K^{94}$
Ta17W83	476.94	196.42	-	-	138.34	-	139.1	289.9	0.2932	0.4798	0.2003	$200K^{94}$
Ta17W83	473.12	196.72	-	-	137.68	-	137.9	288.9	0.2941	0.4774	0.2044	300K ⁹⁴
W	530.25	201.90	-	-	160.92	-	162.2	311.4	0.2780	0.5210	0.1316	$4.2K^{94}$
W	529.81	199.98	-	-	160.83	-	162.5	309.9	0.2769	0.5242	0.1263	100K ⁹⁴
W	526.42	200.75	-	-	159.58	-	160.9	309.3	0.2784	0.5201	0.1331	200K ⁹⁴
W	521.48	201.01	-	-	158.50	-	159.2	307.8	0.2795	0.5171	0.1381	300K ⁹⁴
V	237	122	-	-	47.08	-	82.7	224.1	0.3357	0.3691	0.3834	$4.2K^{95}$
V	236.09	121.09	-	-	46.145	-	50.4	159.4	0.3570	0.3161	0.4701	100K ⁹⁵
V	233.38	120.72	-	-	44.800	-	49.1	158.3	0.3594	0.3102	0.4797	200K ⁹⁵
V	230.98	120.17	-	-	43.768	-	48	157	0.3611	0.3062	0.4863	300K ⁹⁵
V	281.72	124.63	-	-	36.09	-	49.6	177.0	0.3716	0.2800	0.5002	EMTO ⁹⁶
V-2.5Cr	285.81	125.15	_	_	35.38	_	49.5	178.7	0.3733	0.2768	0.5023	EMTO ⁹⁶
V-5Cr	289 59	125.48	_	_	34 37	-	19.1	180.2	0 3751	0 2726	0.5057	EMTO ⁹⁶
V-7 5Cr	292.85	125.84	_	_	33.20	-	48.5	181.5	0.3773	0.2674	0.5104	EMTO ⁹⁶
V10Cr	296.66	125.01	_	_	32.15	-	48.2	182.7	0.3789	0.2635	0.5124	EMTO ⁹⁶
V-2 5Ti	275.2	123.49	_	_	36.60	_	49.2	174 1	0.3708	0.2828	0.4992	EMTO ⁹⁶
V_5Ti	260.21	122.12	_	_	37.03	_	19.2	171.3	0.3700	0.2020	0.1992	EMTO ⁹⁶
V 7 5T;	269.21	122.40	-	-	27.05	-	40.9	162.0	0.3097	0.2000	0.4965	EMTO96
V-7.511	205.45	121.55	-	-	20 22	-	40.7	166.9	0.3084	0.2005	0.4905	EMTO%
V-1011	237.71	120.55	-	-	26.52	-	40.3	175.0	0.30/1	0.2910	0.4940	EMIO ²⁶
V-2.5CF-2.511	279.70	123.82	-	-	30.11	-	49.4	1/5.8	0.3715	0.2811	0.4989	EMIO ²⁶
V-2.5Cr-511	2/3.49	122.72	-	-	36.76	-	49.2	1/3.0	0.3700	0.2846	0.4969	EMIO ³⁶
v-2.5Cr-7.5Ti	207.53	121.67	-	-	57.27	-	48.9	1/0.3	0.3689	0.2874	0.4956	EMITO ²⁰
v-2.5Cr-10Ti	201.76	120.70	-	-	37.94	-	48.8	16/.7	0.36/5	0.2907	0.4934	EMTO
v-4Cr-4Ti	2/8.56	123.34	-	-	36.16	-	49.4	1/5.1	0.3711	0.2819	0.4979	EMTO
V-5Cr-2.5Ti	283.72	124.23	-	-	35.47	-	49.4	177.4	0.3726	0.2784	0.5004	EMTO ⁹⁰
V-5Cr-5Ti	277.78	123.02	-	-	36.24	-	49.4	174.6	0.3708	0.2827	0.4970	EMTO ⁹⁶
V-5Cr-7.5Ti	271.64	121.97	-	-	36.85	-	49.1	171.9	0.3695	0.2859	0.4953	EMTO ⁹⁶
V-5Cr-10Ti	265.81	120.92	-	-	37.53	-	48.9	169.2	0.3680	0.2895	0.4928	EMTO ⁹⁶
V-7.5Cr-2.5Ti	287.22	124.30	-	-	34.62	-	49.2	178.6	0.3739	0.2752	0.5021	EMTO ⁹⁶
V-7.5Cr-5Ti	282.71	122.87	-	-	35.68	-	49.6	176.2	0.3713	0.2816	0.4950	EMTO ⁹⁶
V-7.5Cr-7.5Ti	275.88	122.25	-	-	36.51	-	49.4	173.5	0.3699	0.2849	0.4943	EMTO ⁹⁶
V-7.5Cr-10Ti	269.97	121.12	-	-	37.17	-	49.3	170.7	0.3684	0.2886	0.4917	EMTO ⁹⁶
V-10Cr-2.5Ti	291.44	124.77	-	-	33.76	-	53.9	179.4	0.3635	0.3004	0.5037	EMTO ⁹⁶
V-10Cr-5Ti	285 66	123.62	_	_	35.03	-	534	177 6	0 3633	0 3008	0 4987	EMTO ⁹⁶

TABLE XI: The elastic properties (in GPa) of potential structural materials for nuclear reactors, as well as experimental results(continued).

	Cu	Cu	Cu	Caa	Си	C	G	B	V	G/B	Cauchy Pressure/B	Note
V 10C 7 5T	200.01	122 12	C13	C33	26.05	C 66	50	175	0 2702	0.2842		EMTO ⁹⁶
V-10Cr-7.511	280.81	122.13	-	-	30.05	-	50	175	0.3702	0.2842	0.4918	EMIO ²⁶
V-10Cr-1011	2/4.0/	121.35	-	-	36.90	-	50	172	0.3686	0.2879	0.4903	EMIO
Nb	244.1	130	-	-	27.8	-	37.2	168.0	0.3968	0.2216	0.6082	300K ⁹⁷
Nb90Zr10	229.2	124.8	-	-	27.0	-	35.3	159.6	0.3971	0.2210	0.6128	300K ⁹⁷
Nb80Zr20	203	114	-	-	27.1	-	33.0	143.6	0.3930	0.2303	0.6049	300K ⁹⁷
Nb70Zr30	180.8	106.4	-	-	28.6	-	31.7	131.2	0.3879	0.2422	0.5930	300K ⁹⁷
Nb60Zr40	164.9	100.0	-	-	30.0	-	31.0	121.6	0.3827	0.2545	0.5755	300K ⁹⁷
Nb50Zr50	151.8	96.6	_	_	31.8	_	30.0	115.0	0 3798	0.2613	0 5635	300K ⁹⁷
Nb307r70	124.4	88 7			33.6		26.2	100.3	0.3708	0.2614	0.5445	300K ⁹⁷
NUJUZI70	124.4	124.4	-	-	247	-	20.2	156.2	0.3790	0.2014	0.5445	1500K
IND	220.1	124.4	-	-	34.7	-	39.5	150.5	0.3835	0.2525	0.5739	1500K ⁹⁷
Nb90Zr10	204.2	119.2	-	-	34.6	-	37.6	147.5	0.3826	0.2547	0.5734	1500K ³⁷
Nb80Zr20	177.4	108.1	-	-	33.4	-	33.9	131.2	0.3811	0.2583	0.5694	1500K ⁹⁷
Nb70Zr30	156.9	101.5	-	-	33.1	-	30.8	119.9	0.3817	0.2569	0.5702	1500K ⁹⁷
Nb60Zr40	144.9	96.4	-	-	31.4	-	28.3	112.6	0.3840	0.2515	0.5774	1500K ⁹⁷
Nb50Zr50	131.3	92.6	-	-	30.5	-	25.5	105.4	0.3885	0.2409	0.5886	1500K ⁹⁷
Nb30Zr70	111.9	84.0	-	_	28.7	-	21.5	93.3	0.3931	0.2303	0.5927	1500K ⁹⁷
Nb50Zr50	155.6	96.9	-	_	33.2	_	31.6	116.5	0 3756	0 2713	0 5469	5K ⁹⁷
Nb50Zr50	1/0	05.0	_	_	31.0	_	20.6	113.6	0.3700	0.2710	0.5634	500K ⁹⁷
Nb50Zr50	141.2	93.9	-	-	21.7	-	29.0	110.1	0.2722	0.2009	0.5054	1000K ⁹⁷
NU50Z150	141.2	94.5	-	-	20.7	-	21.9	10.1	0.3652	0.2334	0.5755	1500K ⁹⁷
ND50Zr50	132	92.5	-	-	30.7	-	25.7	105.7	0.38/4	0.2434	0.5849	1500K ²⁷
Cr-0.67%V	379.6	78.2	-	-	102.73	-	119.8	178.7	0.2259	0.6706	-0.1373	80K ⁹⁸
Cr-0.67%V	378.8	78.1	-	-	102.64	-	119.6	178.3	0.2259	0.6709	-0.1376	$100K^{98}$
Cr-0.67%V	375.3	77.5	-	-	102.23	-	118.9	176.8	0.2253	0.6726	-0.1399	150K ⁹⁸
Cr-0.67%V	370.3	76.1	-	-	101.76	-	118.0	174.2	0.2237	0.6774	-0.1473	200K ⁹⁸
Cr-0.67%V	366.1	74.3	-	-	101.41	-	117.4	171.6	0.2215	0.6840	-0.1580	230K ⁹⁸
Cr-0.67%V	363.9	72.9	_	_	101 30	_	117 1	169.9	0 2197	0.6895	-0.1672	240K ⁹⁸
Cr-0.67%V	362.8	71.9	_	_	101.50	_	1171	168.9	0.2197	0.6035	-0.1739	245K ⁹⁸
Cr = 0.67%V	260.0	79.5	_	_	101.27	_	117.1	175.2	0.2104	0.677	0.1206	250K98
$C_{1} = 0.07\%$ V	272.0	10.5	-	-	101.22	-	117.0	175.5	0.2270	0.0074	-0.1290	250K ⁹⁸
Cr-0.6/%V	372.8	82.9	-	-	101.12	-	116.8	1/9.5	0.2326	0.6508	-0.1015	260K ²⁶
Cr-0.67%V	373.2	85.9	-	-	100.72	-	116.1	181.7	0.2365	0.6393	-0.0816	300K ⁹⁸
Cr-0.67%V	371.8	88.0	-	-	100.23	-	115.2	182.6	0.2393	0.6313	-0.0670	350K ⁹⁸
Cr-1.5%V	383.4	102.2	-	-	102.10	-	116.1	195.9	0.2526	0.5924	0.0005	80K ⁹⁸
Cr-1.5%V	382.4	102.1	-	-	101.97	-	115.8	195.5	0.2526	0.5924	0.0007	100K ⁹⁸
Cr-1.5%V	380.1	101.6	-	-	101.59	-	115.3	194.4	0.2525	0.5929	0.0001	130K ⁹⁸
Cr-1.5%V	378.5	101.5	-	-	101.33	-	114.9	193.8	0.2526	0.5926	0.0009	150K ⁹⁸
Cr-1 5%V	377.7	101.6	_	_	101.20	_	114.6	193.6	0.2528	0 5919	0.0021	160K ⁹⁸
Cr 1.5%V	377.3	101.0			101.20		11/1.0	103.0	0.2520	0.5023	0.0014	165K ⁹⁸
Cr 1.5%V	280.7	101.4	-	-	1101.15	-	120.6	106.9	0.2327	0.5925	0.0014	170K ⁹⁸
$C_{1} = 1.5\%$ V	200.7	104.0	-	-	101.02	-	120.0	190.0	0.2450	0.0127	-0.0275	170K
Cr-1.5%V	382.1	106.4	-	-	101.02	-	114.4	198.3	0.2580	0.5//1	0.0271	1/5K ²⁰
Cr-1.5%V	382.0	106.6	-	-	101.00	-	114.4	198.4	0.2582	0.5764	0.0282	180K ⁹⁸
Cr-1.5%V	381.9	107.1	-	-	100.91	-	114.2	198.7	0.2588	0.5748	0.0312	190K ⁹⁸
Cr-1.5%V	381.5	107.2	-	-	100.83	-	114.1	198.6	0.2590	0.5743	0.0321	$200K^{98}$
Cr-1.5%V	379.5	108.2	-	-	100.36	-	113.2	198.6	0.2605	0.5701	0.0395	250K ⁹⁸
Cr-1.5%V	376.4	107.9	-	-	99.88	-	112.5	197.4	0.2606	0.5697	0.0406	300K ⁹⁸
Cr-1.5%V	373.4	108.2	-	_	99.42	_	111.6	196.6	0.2614	0.5676	0.0447	350K ⁹⁸
Cr	394.1	88.5	_	_	103 75	_	121.2	190.4	0 2374	0.6367	-0.0801	0K ⁹
Cr	303.2	88 2			103.73		121.2	190.1	0.2370	0.6378	0.0001	50K ⁹
Cr	200.0	00.2 07.4	-	-	102.75	-	121.1	109.9	0.2370	0.0378	-0.0818	100K ⁹
Cr	389.8	87.4	-	-	103.28	-	120.4	188.2	0.2304	0.0393	-0.0844	100K
Cr	389.4	87.4	-	-	103.04	-	120.1	188.1	0.2367	0.6388	-0.0832	110K ²
Cr	388.0	87.2	-	-	102.35	-	119.5	187.5	0.2372	0.6372	-0.0808	120K ⁹
Cr	386.5	95.3	-	-	101.33	-	117.2	192.4	0.2468	0.6092	-0.0313	125K ⁹
Cr	380.4	91.0	-	-	101.93	-	117.3	187.5	0.2411	0.6258	-0.0583	130K ⁹
Cr	380.3	92.7	-	-	102.28	-	117.3	188.6	0.2425	0.6219	-0.0508	135K ⁹
Cr	378.7	92.9	-	-	102.35	-	117.0	188.2	0.2425	0.6219	-0.0502	140K ⁹
Cr	378 5	94 5	-	_	102.38	_	1167	189.2	0 2441	0.6171	-0.0417	145K ⁹
Cr	374.7	00.0			101.00		11/ 0	101.5	0.2/00	0.6002	-0.0100	185K ⁹
Cr	272.0	<i>99.9</i>	-	-	101.99	-	114.9	191.5	0.2499	0.0002	-0.0109	200K ⁹
Cr	312.9	99.5	-	-	101.60	-	114.0	190.5	0.2494	0.0010	-0.0151	200K ⁹
Cr	364.7	90.9	-	-	101.15	-	114.2	182.2	0.2407	0.6269	-0.0563	250K ²
Cr	348.4	70.2	-	-	100.71	-	114.6	162.9	0.2150	0.7036	-0.1873	300K ⁹
Cr	345.1	66.3	-	-	100.67	-	114.7	159.2	0.2096	0.7204	-0.2158	305K ⁹
Cr	337.2	57.4	-	-	100.70	-	114.9	150.7	0.1960	0.7626	-0.2874	310K ⁹
Cr	354.2	72.4	-	-	100.67	-	115.2	166.3	0.2186	0.6926	-0.1699	315K ⁹
Cr	356.4	75.0	-	-	100.64	-	115.1	168.8	0.2222	0.6820	-0.1519	320K ⁹
Cr	358.4	774	_	_	100 53	_	114.9	171.1	0 2254	0.6721	-0.1352	330K ⁹

	CP class	Eigenvalue1	Eigenvalue2	Eigenvalue3	Δho	charge density
Diamond-C	Bond	-4.731E-1	-4.731E-1	3.796E-1	-5.667E-1	2.404E-1
Diamond-C	Ring	-1.694E-2	6.183E-2	6.244E-2	1.073E-1	2.123E-2
Diamond-C	Cage	2.500E-2	2.500E-2	2.500E-2	7.499E-2	1.312E-2
Diamond-Si	Bond	-7.280E-2	-7.280E-2	2.156E-2	-1.240E-1	8.340E-2
Diamond-Si	Ring	-2.078E-3	7.253E-3	7.314E-3	1.249E-2	5.366E-3
Diamond-Si	Cage	2.742E-3	2.742E-3	2.742E-3	8.220E-3	3.113E-3
Diamond-SI-HSE	Bond	-/./4/E-2	-/./4/E-2	1./14E-2	-1.3/8E-1	8.085/E-2
Diamond-SI-HSE	King	-2.190E-3	7.074E-3	7.074E-3	1.313E-2	3.3/3E-3 2.1947E-2
Diamond-SI-HSE	Cage	2.890E-3	2.890E-3	2.890E-3	8.0808E-3	3.184/E-3
fee Ti	Dond	-1.300E-03	-1.300E-03	-1.300E-03	-4.080E-03	2.972E-02
1cc-11	Bond	-2.493E-03	-2.493E-03	1.750E-05	-3.092E-03	2.971E-02
fee Ti	King	-3.304E-03	3.030E-03	3.243E-02	5.038E-02	2.797E-02
fee Zr	Cage	4.800E-04	4.800E-04	4.800E-04	1.442E-05	2.439E-02
foo Zr	Dond	-4.23/E-04	-4.237E-04	-4.237E-04	-1.2/1E-03	2.040E-02
fee Zr	Dona	-8.391E-04	-0.391E-04	0.080E-04	-1.110E-03	2.040E-02
fee Zr	Corro	-3.331E-03	2.233E-03	2.830E-02	2.323E-02	2.335E-02 2.100E-02
fee Al	Dond	1.000E-03	2.570E.02	1.000E-03	2.039E-02	3.199E-03 2.007E 2
fee Al	Donu	-1.04JE-2	-2.370E-03	1.313E-02	1.14/E-4	3.007E-2
fee Al	C aita	-2.002E-03	4.776E-03	4.776E-03	0.934E-03	2.01/E-2 1.600E 2
fee Al	U-site	7.032E-03	7.032E-03	7.032E-03	2.290E-02	1.090E-2
fee Cu	I-Sile Dond	2.311E-03	2.511E-05	2.311E-03	7.332E-03	2.000E-2 2.924E-02
fee Cu	Donu	-2.077E-02	-1.510E-02	1.002E-01	0.425E-02	3.624E-02
fee Cu	C aita	-9.079E-03	2.190E-02	2.190E-02	3.411E-02 2.072E-02	3.142E-02
fee Cu	U-site	9.909E-03	9.909E-03	9.909E-03	2.975E-02	2.069E-02
fee Au	I-site Bond	1.095E-02	1.095E-02	1.095E-02	5.265E-02	3.044E-02 3.708E-02
fcc-Au	Donu Ring	-2.014E-02	-1.991E-02	2 030F-02	7.472E-02	2.578E-02
fcc-Au	O_site	8 820E-03	2.700E-02 8.820E-03	2.939E-02	4.040E-02	1 310E-02
fcc-Au	T-site	1.488E-02	1.488E-02	1.488E-02	2.040E-02 4.463E-02	2 371E-02
bcc-Mo	Bond	-0.0225	-0.0223	0.0796	0.035	0.050
bcc-Mo	Ring	-0.0225	0.0225	0.0095	0.035	0.037
bcc-Mo	Cage	0.0048	0.0025	0.0057	0.015	0.035
bcc-Nh	Bond	-0.0158	-0.0158	0.0900	0.015	0.0414
bcc-Nb	Ring	-0.0016	0.0190	0.0082	0.0148	0.0307
bcc-Nb	Cage	0.0010	0.0029	0.0134	0.0191	0.0296
hcn-Ti	Nuclei	-0.0016	0.0082	0.0082	-0.0065	0.0335
hcp-Ti	Bond1	0.0029	0.0029	0.0134	-8.074E-5	0.0311
hcp-Ti	Bond2	0.0029	0.0029	0.0134	-0.0062	0.0335
NaCl	Bond1	-2.291E-3	-1.158E-3	1.537E-2	1.192E-2	4.630E-3
NaCl	Bond2	-1.098E-2	-1.097E-2	7.881E-2	5.686E-2	1.180E-2
NaCl	Ring	-2.207E-3	4.412E-3	1.103E-2	1.324E-2	4.270E-3
NaCl	Cage	1.520E-3	1.520E-3	1.520E-3	4.561E-3	1.877E-3
KCl	Bond	-8.756E-03	-8.755E-03	5.886E-02	4.135E-02	1.139E-02
KCl	Ring	-9.270E-04	2.892E-04	6.398E-03	5.760E-03	2.146E-03
KCl	Cage	6.080E-04	6.080E-04	6.080E-04	1.824E-03	7.640E-04
Graphene	Bond	-2.821E-04	-2.810E-04	4.757E-03	4.194E-03	1.307E-03
Diamond-C	Bond	-4.731E-1	-4.731E-1	3.796E-1	-5.667E-1	2.404E-1
Diamond-Si	Bond	-7.280E-2	-7.280E-2	2.156E-2	-1.240E-1	8.340E-2
Diamond-Si-HSE	Bond	-7.747E-2	-7.747E-2	1.714E-2	-1.378E-1	8.6857E-2
fcc-Ti	Bond	-2.493E-03	-2.493E-03	1.750E-03	-3.092E-03	2.971E-02
fcc-Zr	Bond	-8.591E-04	-8.591E-04	6.080E-04	-1.110E-03	2.640E-02
fcc-Al	Bond	-1.045E-2	-2.570E-03	1.313E-02	1.147E-4	3.007E-2
fcc-Cu	Bond	-2.077E-02	-1.516E-02	1.002E-01	6.423E-02	3.824E-02
fcc-Au	Bond	-2.014E-02	-1.991E-02	1.148E-01	7.472E-02	3.708E-02
bcc-Mo	Bond	-0.0225	-0.0223	0.0796	0.035	0.050
bcc-Nb	Bond	-0.0158	-0.0158	0.0900	0.0584	0.0414
hcp-Ti	Bond1	0.0029	0.0029	0.0134	-8.074E-5	0.0311
hcp-Ti	Bond2	0.0029	0.0029	0.0134	-0.0062	0.0335
NaCl	Bond1	-2.291E-3	-1.158E-3	1.537E-2	1.192E-2	4.630E-3
NaCl	Bond2	-1.098E-2	-1.097E-2	7.881E-2	5.686E-2	1.180E-2
KCl	Bond	-8.756E-03	-8.755E-03	5.886E-02	4.135E-02	1.139E-02

TABLE XII: The calculated Eigenvalue of Hessian matrix at critical points and $\triangle \rho$.

TABLE XIII: The charge density (in electrons per Bohr³), laplacian of charge density (in electrons per Bohr⁵) at bonding critical points, shear modulus (in GPa), bulk modulus (in GPa), G/B and Poisson's ratio for fcc and bcc metals.

	$ ho_b$	Δho	θ	$< tan(\theta) >$	G	В	G/B	ν
fcc-Au	3.708E-2	7.472E-2	22.67	0.4177	24	185	0.1301	0.4376
fcc-Pt	5.185E-2	9.207E-2	24.35	0.4526	40	247	0.1620	0.4231
fcc-Pd	4.034E-2	7.732E-2	23.45	0.4338	40	166	0.2391	0.3893
fcc-Cu	3.824E-2	6.423E-2	22.95	0.4235	39	156	0.2499	0.3847
fcc-Al	3.007E-2	1.147E-4	35.15	0.7040	26	79	0.3319	0.3506
fcc-Ir	6.300E-2	8.789E-2	25.90	0.4857	218	348	0.6279	0.2404
bcc-Nb	4.140E-2	5.844E-2	22.72	0.4188	24	174	0.1368	0.4346
bcc-V	4.291E-2	6.023E-2	21.22	0.3884	41	184	0.2251	0.3953
bcc-Ta	4.792E-2	8.588E-2	21.61	0.3963	64	196	0.3262	0.3529
bcc-Mo	5.423E-2	7.932E-2	24.67	0.4595	125	265	0.4729	0.2958
bcc-W	6.054E-2	7.371E-1	24.10	0.4474	151	305	0.4955	0.2874
bcc-Cr	5.570E-2	7.866E-2	24.53	0.4564	137	256	0.5330	0.2737
Diamond-Si	8.340E-2	-1.240E-2	61.45	1.8476	63	89	0.7038	0.2150
Diamond	2.404E-1	-5.667E-1	48.15	1.1164	519	434	1.195	0.073
SiC	1.185E-01	3.001E-2	34.04	0.676	187	212	0.8803	0.1597
ZnS	6.809E-02	8.202E-02	28.99	0.554	32	70	0.4562	0.3020

- ¹ Aguayo,A., Murrieta,G.,Coss,R. de. Elastic stability and electronic structure of fcc Ti, Zr, and Hf: a first-principles study. *Phys.Rev.B*,65:092106(2002)
- ² Kamm,G.N.,Alers,G.A, Low-temperature elastic moduli of aluminum.J.Appl.Phys. 35:327(1964)
- ³ Tsuchiya, T., Kawamura, K., Ab initio study of pressure effect on elastic properties of crystalline Au. J. Chem. Phys., 16,1(2002)
- ⁴ Lazarus, D., The variation of the adiabatic elastic constants of KCl, NaCl, CuZn, Cu, and Al with pressure to 10,000 bars. *Phys.Rev.*, **76**: 545(1949)
- ⁵ Chen, K.Y., Zhao, L.R. and Tse, J.S. Ab initio study of elastic properties of Ir and Ir₃X compounds. *J.Appl.Phys.*,93:2414-2417(2003)
- ⁶ Kamran, S. and Chen, K. and Chen, L. Ab initio examination of ductility features of fcc metals. *Phys.Rev.B*,**79**,024106(2009) and reference therein.
- ⁷ Duesbery, M.S. and Vitek, V. Plastic anisotropy in bcc transition metals. *ActaMater.*, **46**, 1481(1998).
- ⁸ Olsson, P.T., Semi-empirical atomistic study of point defect properties in BCC transition metals. Comput. Mater. Sci., 47: 135-145(2009)
- ⁹ Palmer, S.B. and Lee, E.W. The elastic constants of chromium. *Philos. Mag.*, 24, 311(1971).
- ¹⁰ Rasky, D. J. and Milstein, F. Pseudopotential theoretical study of the alkali metals under arbitrary pressure: Density, bulk modulus, and shear moduli. *Phys.Rev.B*, **33**: 27651(1986)
- ¹¹ McSkimin,H. Andreatch Jr, P,Elastic moduli of diamond as a function of pressure and temperature. *J.Appl.Phys.*, **43**:2944-2948(1972).
- ¹² Clerc, D.G. Ledbetter, H., Second-order and third-order elastic properties of diamond: An ab initio study. *J.Phys.Chem.S olid*, **66**:1589(2005).
- ¹³ Straumanis, M.E., Aka, E.Z, Lattice parameters, coefficients of thermal expansion, and atomic weights of purest silicon and germanium. *J.Appl.Phys.*, **23**:330-334(1952).
- ¹⁴ Feldman, D.W., Parker, J.H. Jr., Choyke, J.W., Patrick, L. Phys. Rev. 173, 787 (1968).
- ¹⁵ Lambrecht, WRL and Segall, B and Methfessel, Michael and Van Schilfgaarde, M, Phys. Rev. B 44, 3685(1991).
- ¹⁶ Sherwin, M.E, Drummond, T.J. Predicted elastic constants and critical layer thicknesses for cubic phase AlN, GaN, and InN on β-SiC. J.Appl.Phys.,69,8423 (1991)
- ¹⁷ E. Soignard, M. Somayazulu, J. Dong, O. F. Sankey, P. F. McMillan. High pressure Chigh temperature synthesis and elasticity of the cubic nitride spinel γ-Si₃N₄. J.Phys. : Condens.Matter, 13,557-563(2001) and reference therein.
- ¹⁸ Papadimitriou,I.,Utton, C., Tsakiropoulos,P. Ab initio investigation of the intermetallics in the Nb[°]CSn binary system. *ActaMater.*,**86**,23(2015).
- ¹⁹ Chen, K. and Zhao, L.R., Rodgers, J. and John, S.T. Alloying effects on elastic properties of TiN-based nitrides. *J.Phys.D* : *Appl.Phys.*,**36**,2725-2729(2003) and reference therein.
- ²⁰ Duan, Y.H., Huang, B., Sun, Y., Peng, M.J., Zhou, S.G. Stability, elastic properties and electronic structures of the stable Zr[°]CAl intermetallic compounds: A first-principles investigation. *J.AlloysComp.*, **590**, 50-60(2014).
- ²¹ Hu, J., Xie, M., Pan, Y., Yang, Y., Liu, M., Zhang, J. The electronic, elastic and structural properties of Pd-Zr intermetallic. *Comput.Mater.Sci.*, **51**,1-6(2012).
- ²² Kinoshita,H. ,Hamaya,N., Fujisawa,H.,Elastic properties of single-crystal NaCl under high pressures to 80 kbar. *J.Phys.Earth*,**27**:337-350 (1979).
- ²³ Lewis, J.T, Lehoczky, A.O. and Briscoe, C.V. Elastic constants of the alkali halides at 4.2K. *Phys.Rev.* 161:877 (1967).
- ²⁴ Liu, Q. and He, Q. Elastic Constants of Mantle Minerals at High Temperature. *IntJThermophys* **29**:1491 (2008).
- ²⁵ Vijay, A and Verma, T.S. Analysis of temperature dependence of elastic constants and bulk modulus for ionic solids. *Phys.B* : *Conden.Matter* **291**:373 (2000).
- ²⁶ Sudha Priyanga, G. and Asvini Meenaatci, A.T. and Rajeswara Palanichamy, R. and Iyakutti, K. Structural, electronic and elastic properties of alkali hydrides (MH: M = Li, Na, K, Rb, Cs): Ab initio study. *Comput.Mater.S ci.* 84:206 (2014).
- ²⁷ Rand, S. C. and Rao, B. S. and Enright, G. D. and Stoicheff, B. P.Differing values of the elastic constants of xenon determined by Brillouin and neutron scattering. *Phys.Rev.B* 15:2352(1977).
- ²⁸ Gewurtz, S. and Kiefte, H. and Landheer, D. and McLaren, R. A. and Stoicheff, B. P. Elastic Constants of Argon and Neon by Brillouin Scattering from Single Crystals near Their Triple Points. *Phys. Rev. Lett.* **29**:1454(1972).
- ²⁹ Gewurtz, S. and Stoicheff, B. P. Elastic constants of argon single crystals determined by Brillouin scattering. *Phys. Rev.* 10:3487(1974).
- ³⁰ Grimsditch, M. and Loubeyre, P. and Polian, A.Brillouin scattering and three-body forces in argon at high pressures.*Phys.Rev.B* **33**:7192(1986).
- ³¹ Skalyo, J. and Endoh, Y. and Shirane, G. Inelastic neutron scattering from solid krypton at 10 K. *Phys.Rev.B* 9:1797(1974).
- ³² Kato, Y.and Stoicheff, B. P.Absolute intensity measurements of Brillouin spectra of liquid and solid krypton, and determination of the elasto-optic constants. *Phys.Rev.B* **11**:3984(1975).
- ³³ Polian, A. and Besson, J. M. and Grimsditch, M. and Grosshans, W. A. Solid krypton: Equation of state and elastic properties. *Phys.Rev.B* **39**:1332(1989).
- ³⁴ Lurie, N. A. and Shirane, G. and Skalyo, J. Phonon dispersion relations in xenon at 10 K. Phys. Rev. B 9:5300(1974) and references therein.
- ³⁵ Gornall, W.S. and Stoicheff, B.P. Determination of the elastic constants of xenon single crystals by Brillouin scattering. *Phys.Rev.B* **4**:4518(1971).
- ³⁶ Sasaki, S.and Wada, N. and Kume, T. and Shimizu, H.High-pressure Brillouin study of the elastic properties of rare-gas solid xenon at pressures up to 45 GPa. *J.RamanS pectr.* 40:121(2009).
- ³⁷ Taga, A and Vitos, Levente and Johansson, Börje and Grimvall, G. Ab initio calculation of the elastic properties of $Al_{1-x}Li_x \le 0.20$ random alloys. *Phys.Rev.B* **71**:014201(2005).
- ³⁸ Zhang, Hualei and Johansson, Börje and Vitos, Levente Ab initio calculations of elastic properties of bcc Fe-Mg and Fe-Cr random alloys.

Phys.Rev.B 71:014201(2009).

- ³⁹ Tian, F. and Delczeg, L. and Chen, N. and Varga, L. and Shen, J. and Vitos, L. Ab initio investigation of high-entropy alloys of 3 d elements. *Phys. Rev. B* 87:075144(2013).
- ⁴⁰ Kandil, HM and Greiner, JD and Smith, JF. Single-Crystal Elastic Constants of Yttria-Stabilized Zirconia in the Range 20 to 700 °C. J.Am.CeramicS oc. 67:341(1984).
- ⁴¹ Yoo,M.H. and Koeppe,M. and Hartig,C. and Mecking,H. and Hermann,W. and Sockel,H.-G. Effect of temperature on elastic constants and dislocation properties of Fe30% Al single crystals. *ActaMater.* 45:4323(1997).
- ⁴² Isaak, D. G. and Anderson, O. L. and Goto, T. Measured elastic moduli of single-crystal MgO up to 1800 K. *Phys.Chem.Minerals* **16**:704(1989).
- ⁴³ Oda, H. and Anderson, O. L. and Isaak, Donald G. and Suzuki, I. Measurement of elastic properties of single-crystal CaO up to 1200 K.Phys.Chem.Minerals, 19,96(1992)
- ⁴⁴ Jamal, M., Sarvestani, N.K., Yazdanic, A., Reshak, A.H., Mechanical and thermodynamical properties of hexagonal compounds at optimized lattice parameters from two-dimensional search of the equation of state. *RS CAdv.*, 4: 57903(2014) and reference therein.
- ⁴⁵ Massalski, T.B. Binary Alloy Phase Diagrams, ASM, Materials Park, 1990.
- ⁴⁶ Wright, A.F. Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN. J.Appl.Phys., 82, 2833 (1977) and reference therein.
- ⁴⁷ Bannikov, V. V and Shein, I.R. and Ivanovskii, A.L. Elastic and electronic properties of hexagonal rhenium sub-nitrides Re₃N and Re₂N in comparison with hcp-Re and wurtzite-like rhenium mononitride ReN. *Phys.S tatusS olidiB*,**248**,1369(2011).
- ⁴⁸ Fan, C. and Wang, Q. and Li, L. and Zhang, S. and Zhu, Y. and Zhang, X. and Ma, M.and Liu, R. and Wang, W. Bulk moduli of wurtzite, zinc-blende, and rocksalt phases of ZnO from chemical bond method and density functional theory. *Appl.Phys.Lett.*,**92**,101917(2008).
- ⁴⁹ Thomas, PJ and Rand, SC and Stoicheff, B.P. Elastic constants of parahydrogen determined by Brillouin scattering. *CanadianJ.Phys.*,**56**,1494(1978).
- ⁵⁰ R.A. Casali, J. Lasave, M.A. Caravaca, S. Koval, C.A. Ponce, R.L. Migoni. Ab-initio and shell model studies of structural, thermoelastic and vibrational properties of SnO₂ under pressure. *J.Phys.* : *Condens.Matter*, 25,135404 (2013) and reference therein.
- ⁵¹ T. Yao, Y. Wang, H. Li, J. Lian, J. Zhang, H. Gou. A universal trend of structural, mechanical and electronic properties in transition metal (M = V, Nb, and Ta) borides: First-principle calculations. *Comput.Mater.S ci.*, **65**, 302(2012).
- ⁵² Wei, PY and Sun, Y and Chen, X-Q and Li, DZ and Li, YY. Anisotropy in electronic, optical, and mechanical properties of superhard body-centered tetragonal C₄ phase of carbon. *Appl.Phys.Lett.*,**97**,061910(2010).
- ⁵³ Bai, X., Li, J.H., Dai, Y.Liu, B.X. Structural and elastic properties of Pd-Zr compounds studied by ab initio calculation. *Intermetallics*,**31**,79-87(2012).
- ⁵⁴ Tanaka, K. and Inui, H and Yamaguchi, M and Koiwa, M. Directional atomic bonds in MoSi 2 and other transition-metal disilicides with the C11 b, C40 and C54 structures. *Mater.Sci.Eng.* : A,261,158(1999).
- ⁵⁵ Tanaka, K and Nawata, K and Inui, H and Yamaguchi, M and Koiwa, M. Temperature dependence of single-crystal elastic constants of Mo(Si, Al)₂. *Intermetallics*, 6,607(1998).
- ⁵⁶ Caravaca, M.A. and Mino, J.C. and Pérez, V.J. and Casali, R.A., Ponce, C.A. Ab initio study of the elastic properties of single and polycrystal TiO₂, ZrO₂ and HfO₂ in the cotunnite structure. *J.Phys.* : *Condens.Matter*,**21**,015501(2009).
- ⁵⁷ Y. Gou and Z. Fu and Y. Liang and Z. Zhong and S. Wang. Electronic structures and mechanical properties of iron borides from first principles. *SolidStateCommun.*,**187**,28(2014).
- ⁵⁸ Panda, K.B. and Chandran, K.S.R. First principles determination of elastic constants and chemical bonding of titanium boride (TiB) on the basis of density functional theory. *ActaMater.*,**54**,1641(2006).
- ⁵⁹ Ikehata, H. and Nagasako, N. and Furuta, T. and Fukumoto, A. and Miwa, K. and Saito, T. First-principles calculations for development of low elastic modulus Ti alloys. *Phys.Rev.B*,**70**,174113(2004).
- ⁶⁰ Chang, Y. A. and Himmel, L. Temperature Dependence of the Elastic Constants of Cu, Ag, and Au above Room Temperature. *J.Appl.Phys.*,**37**,3567(1966).
- ⁶¹ Ledbetter, H.M, Moment, R.L. Elastic properties of face-centered-cubic plutonium. *ActaMetall.*,24,891(1976).
- ⁶² Beeler, B., Deo, C., Baskes, M., Okuniewski, M. First principles calculations of the structure and elastic constants of α , β and γ uranium. *J.Nucl.Mater.*,**433**,143-151(2013).
- ⁶³ Zhang,C., Jiang,H.,Shi,H., Zhong, G.,Su, Y. Mechanical and thermodynamic properties of α-UH₃ under pressure. *J.AlloysComp.*,**604**,171-174(2014).
- ⁶⁴ Zhang, Y., Wang, B., Lu, Y., Yang, Y., Zhang, P. Electronic, mechanical and thermodynamic properties of α-UH₃: A comparative study by using the LDA and LDA+U approaches. *J.Nucl.Mater.*,**430**,137-141(2012).
- ⁶⁵ Salleh, M.D., Macdonald, J.E., Saunders, G.A, Plessis, P.D.V.D. Hydrostatic pressure dependences of elastic constants and vibrational anharmonicity of uranium nitride. *J.Mater.Sci.*, 406, 218-222(1986).
- ⁶⁶ Shibata,H.,Tsuru, T., Hirata, M.,Kaji, Y. First principles study on elastic properties and phase transition of NpN. *J.Nucl.Mater.*,**401**,113-117(2010).
- ⁶⁷ Lu, Y., Wang, B., Li, R., Shi, H., Zhang, P. Structural, electronic, mechanical, and thermodynamic properties of UN₂: Systematic density functional calculations. *J.Nucl.Mater.*,**410**,46-51(2011).
- ⁶⁸ Mei, Z. and Stan, M., Yang, J. First-principles study of thermophysical properties of uranium dioxide. J.AlloysComp., **603**, 282-286(2014).
- ⁶⁹ Hutchings, M. T. High-temperature studies of UO_2 and ThO_2 using neutron scattering techniques. *J.Chem.S OC.*, *FuruduyTrans.*, **83**,1083(1987).
- ⁷⁰ Shi, H., Zhang, P., Li, S., Sun, B., Wang, B. Electronic structures and mechanical properties of uranium monocarbide from first-principles LDA+U and GGA+U calculations. *Phys.Lett.A.*,**373**,3577-3581(2009).
- ⁷¹ Shi, H., Zhang, P., Li, S., Wang, B,Sun, B. First-principles study of UC₂ and U₂C₃. J.Nucl.Mater.,**396**,218-222(2010).
- ⁷² Yang, J., Gao, T., Liu, B., Sun, G., Chen, B. Elastic anisotropy, vibrational, and thermodynamic properties of U₂Ti intermetallic compound with AlB2-type structure under high pressure up to 100 GPa. *J.Appl.Phys.*,**117**,125903(2015) and reference therein.

- ⁷³ Sudha Priyanga,G., Rajeswarapalanichamy,R., Iyakutti, K. First principles study of structural, electronic, elastic and magnetic properties of cerium and praseodymium hydrogen system REH_x (RE: Ce, Pr and x=2, 3). *J.RareEarths*,**33**,289(2015) and reference therein.
- ⁷⁴ Korozlu, N., Colakoglu, K., Deligoz, E., Aydin, S. The elastic and mechanical properties of MB 12 (M= Zr, Hf, Y, Lu) as a function of pressure. *J.AlloysComp.*,**546**,157-164(2013).
- ⁷⁵ He, Y and Schwarz, RB and Darling, T and Hundley, M and Whang, SH and Wang, ZM. Elastic constants and thermal expansion of single crystal γ-TiAl from 300 to 750 K. *Mater.S ci.Eng.* : A,239,157-163(1997).
- ⁷⁶ Bhat, S. S. and Waghmare, U. V. and Ramamurty, U. Effect of oxygen vacancies on the elastic properties of zinc oxide: A first-principles investigation. *Comput.Mater.Sci.*,239,157-163(2015).
- ⁷⁷ Pan,Y. and Zheng,W.T. and Guan,W.M. and Zhang,K.H. and Yu,S.S. and Hu,X.Y.Effect of boron vacancies on mechanical properties of ReB₂ from first-principles calculation. *Comput.Mater.Sci.*,**82**,12-16(2014).
- ⁷⁸ Sun,JP and Song,Y. and Wen,GW and Wang, Y. and Yang, R. Softening of hydroxyapatite by vacancies: a first principles investigation. *Mater.S ci.Eng.C*,**33**,1109(2013).
- ⁷⁹ Wen, M and Barnoush, A and Yokogawa, K. Calculation of all cubic single-crystal elastic constants from single atomistic simulation: Hydrogen effect and elastic constants of nickel. *Comput.Phys.Comm.*,**182**,1621(2011).
- ⁸⁰ Li,Z. and Grimsditch,M. and Xu,X. and Chan,S. -K. The elastic, piezoelectric and dielectric constants of tetragonal PbTiO₃ single crystals. *Ferroelectrics*,**141**,313-325(1993).
- ⁸¹ Fisher, E. S. and Renken, C. J. Single-Crystal Elastic Moduli and the hcp to bcc Transformation in Ti, Zr, and Hf. *Phys.Rev.*,**135**,A482(1964).
- ⁸² Ledbetter, H. and Ogi, H. and Kai, S. and Kim, S. and Hirao, M. Elastic constants of body-centered-cubic titanium monocrystals. *J.Appl.Phys.*,**95**,4642(2004).
- ⁸³ W.Weber, Phys. Rev. B **8**5082(1973).
- ⁸⁴ Scabarozi, T. H. and Amini, S. and Finkel, P. and Leaffer, O. D. and Spanier, J. E. and Barsoum, M. W. and Drulis, M. and Drulis, H. and Tambussi, W. M. and Hettinger, J. D. and Lofland, S. E. *J.Appl.Phys.*,**104**,033502(2008).
- ⁸⁵ Yu, R. and Zhang, X. F. and He, L. L. and Ye, H. Q. Topology of charge density and elastic anisotropy of Ti₃SiC₂ polymorphs *J.Mater.Res.*,**20**,1180(2004).
- ⁸⁶ Ledbetter, H.M. Monocrystal-Polycrystal Elastic Constants of a Stainless Steel *Phys.S tat.S ol.(a)*, **85**, 89(1984) and reffernces therein.
- ⁸⁷ Teklu, A. and Ledbetter, H. and Kim, S. and Boatner, L.A. and McGuire, M. and Keppens, V. Single-crystal elastic constants of Fe-15Ni-15Cr alloy. *Metall.Mater.Trans.A*, 35,3149(2004)
- ⁸⁸ Khazaei, M. and Arai, M. and Sasaki, T. and Estili, M. and Sakka, Y. Trends in electronic structures and structural properties of MAX phases: phases: a first-principles study on M₂AlC (M = Sc, Ti, Cr, Zr, Nb, Mo, Hf, or Ta), M₂AlN, and hypothetical M₂AlB phases *J.Phys.* : *Condens.Matter* 26 505503(2014).
- ⁸⁹ He,Xiaodong and Bai, Yuelei and Zhu, Chuncheng and Sun, Yue and Li, Mingwei and Barsoum,M.W. General trends in the structural, electronic and elastic properties of the M₃AlC₂ phases (M = transition metal): A first-principle study *Comput.Mater.Sci.*,**49**,691(2010).
- ⁹⁰ Bai, Yuelei and He, Xiaodong and Sun, Yue and Zhu, Chuncheng and Li, Mingwei and Shi, Liping. Chemical bonding and elastic properties of Ti₃AC₂ phases (A= Si, Ge, and Sn): A first-principle study *SolidS tateS ci.*,**12**,1220(2010).
- ⁹¹ Bouhemadou, A. Calculated structural, electronic and elastic properties of M₂GeC (M= Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W). *Appl.Phys.A.*,**96**,959(2009).
- ⁹² Bouhemadou, A and Khenata, R. Prediction study of structural and elastic properties under the pressure effect of M₂GaC (M= Ti, V, Nb, Ta). *J.Appl.Phys.A.*,**102**,043528(2007).
- ⁹³ Alers, G.A. Elastic moduli of vanadium *Phys.Rev.*,**119**,1532(1960).
- ⁹⁴ Anderson, C. E. and Brotzen, F. R. Elastic constants of tantalum-tungsten alloys. J.Appl.Phys.,53,292(1982).
- ⁹⁵ Bolef, D.I. and Smith, R.E. and Miller, J.G.Elastic properties of vanadium. I. Temperature dependence of the elastic constants and the thermal expansion. *Phys.Rev.B*,3,4100(1971).
- ⁹⁶ Li, X.and Zhang, H. and Lu, S. and Li, W. and Zhao, J.n and Johansson, B. and Vitos, L. Phys. Rev. B, 86,014105(1971).
- ⁹⁷ Wang,X. and Liu,L.B. and Wang,M.F. and Shi,X. and Huang,G.X. and Zhang,L.G. Computational modeling of elastic constants as a function of temperature and composition in Zr CNb alloys. *Calphad*, **48**,89(2015) and references therein.
- ⁹⁸ De Camargo, P.C. and Brotzen, F.R. Elastic constants of antiferromagnetic chromium-vanadium alloys. J.Mag. Mag. Mater., 27, 65(1982).