Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

## **Supporting information**

Imine-linked micron-network polymers with high polyethylene glycol uptake for shaped-stabilized phase change materials

Jia Tang, Shuang Fan, Wenjun Dong, Jingjing Wang, Hongyi Gao, Mu Yang, Ming Yang, and Ge Wang\*

Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China

\*Corresponding author. Tel.: +86-10-62333765. Email: gewang@mater.ustb.edu.cn

## **Table of Contents:**

**Table S1.** The macroscopic characteristics of network polymers obtained from mercury porosimetry.

**Table S2.** The BET and pore volume tests of the network polymers.

Table S3. Phase change enthalpies of PEG-6000@NP-A PCMs composites.

**Table S4.** Phase change enthalpies of the composite PCM and the sample after cycling.

 Table S5. Phase change enthalpies of PEG-6000@NP-B PCMs composites.

Fig S1. Pore size distribution curve of NP-A tested by mercury porosimetry.

Fig S2. Pore size distribution curve of NP-B tested by mercury porosimetry.

Fig S3. Nitrogen sorption/desorption isotherms and its relative pore size distributions.

Fig S4. SEM images of PEG@NP-B composites.

Fig S5. The shape-stable effect photos of PEG-6000@NP-B composite PCMs.

Fig S6. The PXRD of PEG-6000@NP-B PCMs with various PEG mass fractions.

Fig S7. FT-IR spectrum of PEG-6000@NP-B PCMs.

**Fig S8.** The DSC curves of PEG-6000@NP-B PCMs composites with various PEG mass fractions.



 Table S1. The macroscopic characteristics of network polymers obtained from mercury porosimetry.

Fig S1. Pore size distribution curve of NP-A tested by mercury porosimetry.



Fig S2. Pore size distribution curve of NP-B tested by mercury porosimetry.



Fig S3. (a) Nitrogen sorption/desorption isotherms and (b) pore size distributions of

the two network polymers.

**Table S2.** BET and pore volume tests of the network polymers obtained from nitrogen sorption/desorption analysis.

| Samples | BET (cm <sup>2</sup> /g) | Pore volume $(cm^3/g)$ |
|---------|--------------------------|------------------------|
| NP-A    | 46.3                     | 0.081                  |
| NP-B    | 64.4                     | 0.056                  |



**Fig S4.** SEM images of PEG@NP-B with different mass fraction: (a) 50 wt%, (b) 60 wt%, (c) 70 wt% and (d) 80 wt%.

|                                       | 75 wt%PEG | 80 wt%PEG | 85wt%PEG |
|---------------------------------------|-----------|-----------|----------|
| 0 mins                                |           | *         | *        |
| 60 mins                               |           | AND NOT   |          |
| After<br>50times<br>cycling<br>0 min  |           | -         | -        |
| After<br>50times<br>cycling<br>60 min |           |           | -        |

Fig S5. The shape-stable effect photos of PEG-6000@NP-B composite PCMs.



Fig S6. XRD patterns of PEG-6000@NP-B PCMs with various PEG mass fractions.



Fig S7. FT-IR spectrums of PEG-6000@NP-B PCMs with various PEG mass fractions.

**Table S3.** Phase change enthalpies of PEGs, PEG-6000@NP-A PCMs compositeswith various PEG mass fractions.

| Samples         | $T_m (^{o}C)$ | $T_{c}$ (°C) | $\Delta_{H_m\left(J/g\right)}$ | $\Delta_{H_c}\left(J/g\right)$ |
|-----------------|---------------|--------------|--------------------------------|--------------------------------|
| Pure PEG        | 64.9          | 33.7         | 198.7                          | 182                            |
| 50 wt% PEG@NP-A | 59.2          | 35.6         | 55.6                           | 52                             |
| 60 wt% PEG@NP-A | 60.4          | 34.1         | 106.8                          | 99.5                           |
| 70 wt% PEG@NP-A | 61.3          | 34.6         | 135.9                          | 126.5                          |
| 80 wt% PEG@NP-A | 61.3          | 33.6         | 157.9                          | 146.3                          |
| 85 wt% PEG@NP-A | 61.3          | 33.8         | 164.9                          | 152                            |

 Table S4. Phase change enthalpies of the 85 wt%PEG@NP-A composite PCMand

 its50 times cycling sample.

| Samples          | $T_m (^{o}C)$ | $T_{c}(^{o}C)$ | $\Delta_{H_m\left(J/g\right)}$ | $\Delta_{H_{c}}\left(J/g\right)$ |
|------------------|---------------|----------------|--------------------------------|----------------------------------|
| 85 wt% PEG@NP-A  | 61.3          | 33.8           | 164.9                          | 152.0                            |
| 50 times cycling | 61.9          | 31             | 146.2                          | 129.5                            |



**Fig S8.** The DSC curves of PEG-6000@NP-B PCMs composites with various PEG mass fractions.

**Table S5.** Phase change enthalpies of PEGs, PEG-6000@NP-B PCMs composites with various PEG mass fractions.

| Samples         | $T_m (^{o}C)$ | $T_{c}$ (°C) | $\Delta_{H_m\left(J/g\right)}$ | $\Delta_{H_c}\left(J/g\right)$ |
|-----------------|---------------|--------------|--------------------------------|--------------------------------|
| Pure PEG        | 64.9          | 33.7         | 198.7                          | 182                            |
| 50 wt% PEG@NP-B | 60.5          | 34.7         | 103.4                          | 97.2                           |
| 60 wt% PEG@NP-B | 60.6          | 31.3         | 122.8                          | 111.3                          |
| 70 wt% PEG@NP-B | 60.9          | 36.5         | 146                            | 133.6                          |
| 80 wt% PEG@NP-B | 60.9          | 32.4         | 149.2                          | 135.1                          |
| 85 wt% PEG@NP-B | 61.9          | 35.7         | 155.5                          | 143.8                          |