Supporting Information

Reaction control in heterogeneous catalysis using montmorillonite: Switching between acid-catalysed and red-ox processes

José Antonio Morales-Serna,*^a Bernardo A. Frontana-Uribe,^{b,c} Rosario Olguín,^c Virginia Gómez-Vidales,^c Leticia Lomas-Romero,^a Erendira Garcia-Ríos,^c Ruben Gaviño,^c Jorge Cárdenas*^c

- ^a Departamento de Química, Universidad Autónoma Metropolitana, Av. San Rafael Atlixco No.186, Ciudad de México 09340, México. Fax: +52 55 5318900; Tel: +52 55 5318 9593; Email: <u>joseantonio.moralesserna@xanum.uam.mx</u> (JAMS).
- ^b Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Carretera Toluca-Ixtlahuaca Km 14.5, C.P. 50200 Toluca, Estado de México, México.
- ^c Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México. Fax: +52 55 5616 2217; Tel: +52 55 56224413; E-mail: <u>rjcp@unam.mx</u> (JC).

Table of Contents

1. General methods	S1
2. Experimental procedures	S1
3. Characterization data	S 3
4. References	S6

1. General methods

All the chemicals were purchased from Aldrich Chemical Co and used without further purification unless stated otherwise. Yields refer to the chromatographically and spectroscopically (¹H and ¹³C) homogeneous materials, unless otherwise stated. All glassware utilized was flame-dried before use. Reactions were monitored by TLC carried out on 0.25 mm Macherey Nagel silica gel plates. Developed TLC plates were visualized under a short-wave UV lamp and by heating plates that were dipped in Ce(SO₄)₂. Flash column chromatography (FCC) was performed using flash silica gel (230–400) and employed a solvent polarity correlated with TLC mobility. NMR experiments were conducted on a Varian Unity and Bruker Avance 300 MHz instruments using CDCl₃ (99.9% D) as the solvent, with chemical shifts (δ) referenced to internal standards residual CHCl₃ and CDCl₃,(7.26 ppm ¹H, 77.0 ppm ¹³C) or Me₄Si as an internal reference (0.00 ppm). Chemical shifts are in parts per million (ppm). Mass spectra were recorded on Jeol JS102 high-resolution mass spectrometer. The measurements of EPR were made with a Jeol JES-TE300 X band fashions spectrometer with a cylindrical cavity in the mode TE₀₁₁. The external calibration of the magnetic field was made with a precision gaussmeter, Jeol ES-FC5.

2. Experimental procedures

Preparation of modified montmorillonite

The natural montmorillonite sample was the same as we described previously.¹ Modification and characterization of montmorillonite with CF_3SO_3H was realized according to the method previously reported.¹

General procedure for the synthesis of tetrasubstituted furans

A solution of hydroquinone (50% mmol) and modified montomorillonite (20%w) in anhydrous benzene (30 mL) was deoxygenated under an argon atmosphere. Then a solution of α -hydroxyl ketones **1** (1 mmol) in deoxygenated benzene (5 mL) was added at room temperature. The reaction mixture was stirred for 12 h at reflux under argon atmosphere. After that time, the reaction mixture was filtered and concentrated in vacuum. The resulting residue was purified by flash column chromatography on silica gel.

S1

General procedure for the synthesis of 1,2-diketones

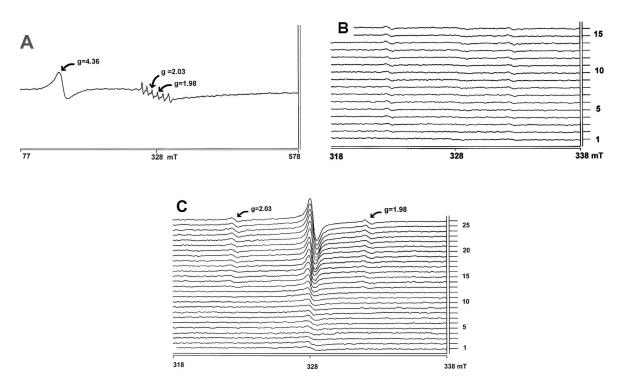
A solution of α -hydroxyl ketones **1** (1 mmol) and modified montomorillonite (20%w) in anhydrous benzene (30 mL) was stirred for 6 h at reflux under argon atmosphere. After that time, the reaction mixture was filtered and concentrated in vacuum. The resulting residue was purified by flash column chromatography on silica gel.

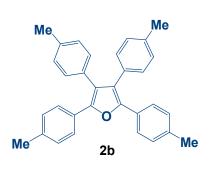
Reuse of the catalyst

When the organic reactions were complete, the montmorillonite catalyst was removed by filtration, washed with ethyl acetate, dried overnight in an oven at 100 °C, and subjected to a second experimental run with the same substrate. After the completion of four runs, results indicated no significant variation in yield.

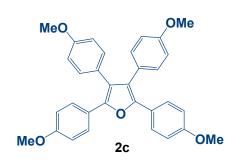
EPR analysis

A tube was prepared adding 40 mg of the modified montmorillonite and dried at 70 °C under vacuum; the tube was analyzed by EPR (Figure **S1A**). Then 2 mL of anhydrous benzene were added and the sample was analyzed (Figure **S1B**). The last experiment was carried out after adding benzoine to the tube, scanning every 5 minutes (Figure **S1C**).

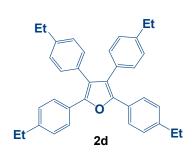



Figure S1

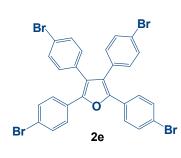
3. Characterization data


2,3,4,5-tetraphenylfuran **2a**:² Following the general procedure for the synthesis of tetrasubstituted furans, the reaction was carried out starting from benzoin 1a (212 mg, 1 mmol), hydroquinone (55 mg, 0.5 mmol) and modified montmorillonite (42 mg), to give 111 mg of a white solid (60%, mp 173-174 °C); ¹H NMR (CDCl₃): δ 7.51-7.49 (m, 4H), 7.26-7.20 (m, 12H), 7.16-12.13 (m, 4H); ¹³C NMR (CDCl₃): δ 147.7, 133.1, 130.9, 130.4, 128.5,

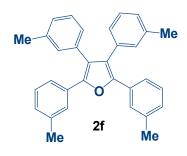
128.3, 127.3, 127.1, 125.8, 125.1. HRMS (FAB) calcd for C₂₈H₂₀O 372.1514, found 372.1518.


2,3,4,5-tetra-p-tolylfuran 2b:² Following the general procedure for the synthesis of tetrasubstituted furans, the reaction was carried out starting from benzoin 1b (240 mg, 1 mmol), hydroquinone (55 mg, 0.5 mmol) and modified montmorillonite (48 mg), to give 133 mg of a white solid (62%, mp 185-186 °C); ¹H NMR (CDCl₃): δ 7.37 (d, J = 8.4 Hz, 4H), 7.04 (d, J = 8.0 Hz, 4H), 7.02 (s,

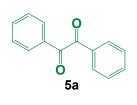
8H), 2.36 (s, 12H); ¹³C NMR (CDCl₃): δ 147.5, 136.9, 136.5, 130.3, 130.2, 129.0, 128.7, 128.4, 125.8, 124.3, 29.7, 21.3. HRMS (FAB) calcd for C₃₂H₂₈O 428.2141, found 428.2139.


2,3,4,5-tetrakis(4-methoxyphenyl)furan 2c:³ Following the general procedure for the synthesis of tetrasubstituted furans, the reaction was carried out starting from benzoin 1c (272 mg, 1 mmol), hydroquinone (55 mg, 0.5 mmol) and modified montmorillonite (54 mg), to give 160 mg of a white solid (65%, mp 207-209 °C); ¹H NMR (CDCl₃): δ 7.42 (d,

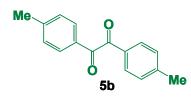
J = 8.8 Hz, 4 H), 7.04 (d, J = 8.8 Hz, 4 H), 6.79 (d, J = 8.2 Hz, 4 H), 6.77 (d, J = 8.4 Hz, 4 H), 3.78 (s, 12H); ¹³C NMR (CDCl₃): δ 147.7, 133.1, 130.9, 130.4, 128.5, 128.3, 127.3, 127.1, 125.8, 125.1, 55.1, 55.0. HRMS (FAB) calcd for C₃₂H₂₈O₅ 492.1937, found 492.1941.


2,3,4,5-tetrakis(4-ethylphenyl)furan 2c:⁴ Following the general procedure for the synthesis of tetrasubstituted furans, the reaction was carried out starting from benzoin **1d** (268 mg, 1 mmol), hydroquinone (55 mg, 0.5 mmol) and modified montmorillonite (52 mg), to give 157 mg of a white solid (65%, mp 194-196 °C); ¹H NMR (CDCl₃): δ 7.35 (d, *J* = 8.2

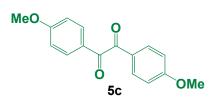
Hz, 4 H), 7.03-6.89 (m, 12H), 2.58-2.51 (m, 8H), 1.16 (t, J = 7.6 Hz, 6H), 1.15 (t, J = 7.6 Hz, 6H); ¹³C NMR (CDCl₃): δ 145.5, 143.2, 142.7, 130.6, 130.3, 128.7, 127.8, 127.7, 125.8, 124.4, 28.6, 28.5, 15.3, 15.1. HRMS (FAB) calcd for C₃₆H₃₆O 484.2766, found 484.2769.


2,3,4,5-tetrakis(4-bromophenyl)furan 2e:² Following the general procedure for the synthesis of tetrasubstituted furans, the reaction was carried out starting from benzoin **1e** (368 mg, 1 mmol), hydroquinone (55 mg, 0.5 mmol) and modified montmorillonite (72 mg), to give 205 mg of a white solid (60%, mp 165-167 °C); ¹H NMR (CDCl₃): δ 7.42 (d, *J* = 8.0 Hz, 8 H),

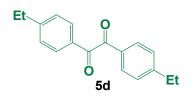
7.32 (d, J = 8.0 Hz, 4 H), 6.98 (d, J = 8.0 Hz, 4 H); ¹³C NMR (CDCl₃): δ 147.3, 131.9, 131.7, 131.1, 128.9, 127.3, 121.9, 121.8 HRMS (FAB) calcd for C₂₈H₁₆BrO 683.7935, found 683.7939.


2,3,4,5-tetra-*m***-tolylfuran**:² Following the general procedure for the synthesis of tetrasubstituted furans, the reaction was carried out starting from benzoin **1f** (240 mg, 1 mmol), hydroquinone (55 mg, 0.5 mmol) and modified montmorillonite (48 mg), to give 128 mg of a white solid (60%, mp 100-102 °C); ¹H NMR (CDCl₃): δ 7.41 (s, 2 H), 7.25 (d, *J* = 5.6 Hz, 2 H), 7.12 (t, *J* = 7.6 Hz, 4

H), 7.04-6.94 (m, 8 H), 2.30 (s, 6 H), 2.23 (s, 6 H); 13 C NMR (CDCl₃): δ 147.6, 137.9, 137.7, 133.2, 131.1, 128.1, 127.8, 127.5, 126.4, 125.1, 123.1, 21.5, 21.3. HRMS (FAB) calcd for C₃₂H₂₈rO 428.2140, found 428.2145.

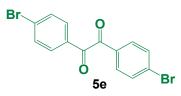

Benzil 5a:⁵ Following the general procedure for the synthesis of 1,2-diketones, the reaction was carried out starting from benzoin **1a** (212 mg, 1 mmol) and modified montmorillonite (42 mg), to give 199 mg of a white solid (95%, mp 92-94 °C); ¹H NMR (CDCl₃): δ 8.01-7.94 (m, 4H), 7.70-7.64 (m, 2H), 7.56-7.50 (m, 4H); ¹³C NMR

(CDCl₃): δ 194.6, 134.9, 133.0, 129.9, 129.0. HRMS (FAB) calcd for C₁₄H₁₀O₂ 210.0681, found 210.0682.


Benzil 5b:⁵ Following the general procedure for the synthesis of 1,2-diketones, the reaction was carried out starting from benzoin **1b** (240 mg, 1 mmol) and modified montmorillonite (48 mg), to give 226 mg of a white solid (95%, mp 102-104 °C); ¹H NMR (CDCl₃): δ 7.68 (d, *J* = 8 Hz,

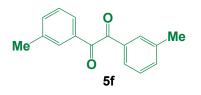
4H), 7.28 (d, *J* = 8 Hz, 4H), 2.40 (s, 6H); ¹³C NMR (CDCl₃): δ 194.6, 146.2, 130.9, 130.1, 129.8, 22.0 HRMS (FAB) calcd for C₁₆H₁₄O₂ 238.0994, found 238.0996.

Benzil 5c:⁵ Following the general procedure for the synthesis of 1,2-diketones, the reaction was carried out starting from benzoin **1c** (272 mg, 1 mmol) and modified montmorillonite (54 mg), to give 256 mg of a white solid (95%, mp 131-133 °C); ¹H NMR (CDCl₃): δ


7.69 (d, J = 8 Hz, 4H), 6.92 (d, J = 8 Hz, 4H), 3.88 (s, 6H); ¹³C NMR (CDCl₃): δ 193.6, 165.0, 132.5, 126.5, 114.4, 55.8 HRMS (FAB) calcd for C₁₆H₁₄O₄ 270.0892, found 270.0893.

Benzil 5d:⁵ Following the general procedure for the synthesis of 1,2-diketones, the reaction was carried out starting from benzoin **1d** (268 mg, 1 mmol) and modified montmorillonite (52 mg), to give 253 mg of a white solid (95%, mp 122-124 °C); ¹H NMR (CDCl₃): δ

7.80 (d, J = 8 Hz, 4H), 7.23 (d, J = 8 Hz, 4H), 2.62 (q, J = 7.6 Hz, 4H), 1.15 (t, J = 7.6 Hz, 6h); ¹³C


NMR (CDCl₃): δ 194.7, 152.3, 130.9, 130.2, 128.6, 29.3, 15.2. HRMS (FAB) calcd for C₁₈H₁₈O₂ 266.1307, found 266.1309.

Benzil 5e:⁵ Following the general procedure for the synthesis of 1,2-diketones, the reaction was carried out starting from benzoin **1e** (368 mg, 1 mmol) and modified montmorillonite (72 mg), to give 328 mg of a white solid (90%, mp 223-225 °C); ¹H NMR (CDCl₃): δ 7.83 (d, *J* = 8 Hz, 4H), 7.67 (d, *J* = 8 Hz, 4H); ¹³C NMR (CDCl₃): δ 192.7, 132.7,

131.7, 131.4, 130.9. HRMS (FAB) calcd for C₁₄H₈Br₂O₂ 365.8891, found 365.8893.

Benzil 5f:⁵ Following the general procedure for the synthesis of 1,2-diketones, the reaction

was carried out starting from benzoin **1f** (240 mg, 1 mmol) and modified montmorillonite (48 mg), to give 226 mg of a white solid (95%, mp 125-127 °C); ¹H NMR (CDCl₃): δ 7.82-7.73 (m, 4H), 7.47 (d, *J* = 7.6 Hz, 2H), 7.39 (t, *J* = 7.6 Hz, 2H), 2.40 (s, 6H); ¹³C NMR (CDCl₃): δ 195.1,

139.1, 135.8, 133.2, 130.4, 129.0, 127.4, 21.4. HRMS (FAB) calcd for $C_{16}H_{14}O_2$ 238.0994, found 238.0998.

4. References

 ¹ (a) G. Granados-Oliveros, V.; Gómez-Vidales, A.; Nieto-Camacho, J. A.; Morales-Serna, J. Cárdenas, and M. Salmón. RSC Adv., 2013, 3, 937; (b) R. Y. M. Vargas, H. I. Beltrán, V. E. Labastida, L. C. Lónaz and M. Salmón, L. Mater. Bas., 2007, 22, 788.

E. Labastida, L. C. López and M. Salmón, *J. Mater. Res.*, 2007, **22**, 788.

²(*a*) L. Wang, Jun Li, Y. Lv, G. Zhao and S. Gao, *Synlett*, 2012, **23**, 1074, (*b*) Y. Wen, S. Zhu, H. Jiang, A. Wang and Z. Chen, *Synlett*, 2011, 1023; (*c*) A. Wang, H. Jiang and Q. Xu, *Synlett*, 2009, 929.

³ M. Nakano, H. Tsurugi, T. Satoh and M. Miura, Org. Lett., 2008, **10**, 1851.

⁴ M. Hussain, R. A. Khera, N. T. Hung and P. Langer, Org. Biomol. Chem., 2011, 9, 370.

 ⁵ (a) Z., Zhishuo and Z. Xiaosong, Chin. J. Chem. 2012, **30**, 1683; (b) J.-D. Lou, Y.-C. Ma, N. Vatanian, Q. Wang and C. Zhang, Synth. React. Inorg., Met.-Org., Nano-Met. Chem., 2010, **40**, 157; (c) J.-D. Lou a, L. Li, N. Vatanian, X L. Lu and X. Yu, Synth. React. Inorg., Met.-Org., Nano-Met. Chem., 2008, **38**, 373.